Publications by authors named "Onkar S Game"

Electronic devices cover a large subset of daily life gadgets which use power to run, hence increasing the load of the energy needs and indirectly impacting greenhouse gas emissions. Smart electrochromic windows provide a solution to this through remarkable energy saving by adjusting optical behavior depending on the environmental conditions. Since the electrochromic windows also need power to run, a self-powered electrochromic panel will be a better solution.

View Article and Find Full Text PDF

Integrating photovoltaic devices onto the surface of carbon-fiber-reinforced polymer substrates should create materials with high mechanical strength that are also able to generate electrical power. Such devices are anticipated to find ready applications as structural, energy-harvesting systems in both the automotive and aeronautical sectors. Here, the fabrication of triple-cation perovskite n-i-p solar cells onto the surface of planarized carbon-fiber-reinforced polymer substrates is demonstrated, with devices utilizing a transparent top ITO contact.

View Article and Find Full Text PDF

Spray coating is an industrially mature technique used to deposit thin films that combines high throughput with the ability to coat nonplanar surfaces. Here, we explore the use of ultrasonic spray coating to fabricate perovskite solar cells (PSCs) over rigid, nonplanar surfaces without problems caused by solution dewetting and subsequent "run-off". Encouragingly, we find that PSCs can be spray-coated using our processes onto glass substrates held at angles of inclination up to 45° away from the horizontal, with such devices having comparable power conversion efficiencies (up to 18.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) are becoming widely utilized as hole-selective layers in high-performance p-i-n architecture perovskite solar cells. Ultrasonic spray coating and airbrush coating are demonstrated here as effective methods to deposit MeO-2PACz; a carbazole-based SAM. Potential dewetting of hybrid perovskite precursor solutions from this layer is overcome using optimized solvent rinsing protocols.

View Article and Find Full Text PDF

The addition of alkali metal halides to hybrid perovskite materials can significantly impact their crystallisation and hence their performance when used in solar cell devices. Previous work on the use of potassium iodide (KI) in active layers to passivate defects in triple-cation mixed-halide perovskites has been shown to enhance their luminescence efficiency and reduce current-voltage hysteresis. However, the operational stability of KI passivated perovskite solar cells under ambient conditions remains largely unexplored.

View Article and Find Full Text PDF

The development of scalable deposition methods for perovskite solar cell materials is critical to enable the commercialization of this nascent technology. Herein, we investigate the use and processing of nanoparticle SnO films as electron transport layers in perovskite solar cells and develop deposition methods for ultrasonic spray coating and slot-die coating, leading to photovoltaic device efficiencies over 19%. The effects of postprocessing treatments (thermal annealing, UV ozone, and O plasma) are then probed using structural and spectroscopic techniques to characterize the nature of the np-SnO/perovskite interface.

View Article and Find Full Text PDF
Article Synopsis
  • We use ultrasonic spray-coating to create cesium-containing triple-cation perovskite solar cells that achieve a power-conversion efficiency of 17.8%.
  • By exposing the spray-cast films briefly to low vacuum, we can control how the perovskite film crystallizes.
  • The vacuum-exposed films are smoother and have more compact crystals compared to the rougher, inhomogeneous films that are not vacuum-exposed, indicating potential for scalable manufacturing of better solar cells.
View Article and Find Full Text PDF

Wide-bandgap perovskite solar cells (PSCs) based on organolead (I, Br)-mixed halide perovskites (e.g., MAPbI2Br and MAPbIBr2 perovskite with bandgaps of 1.

View Article and Find Full Text PDF

The use of organometal trihalide perovskites (OTPs) in perovskite solar cells (PSCs) is revolutionizing the field of photovoltaics, which is being led by advances in solution processing of OTP thin films. First, we look at fundamental phenomena pertaining to nucleation/growth, coarsening, and microstructural evolution involved in the solution-processing of OTP thin films for PSCs from a materials-science perspective. Established scientific principles that govern some of these phenomena are invoked in the context of specific literature examples of solution-processed OTP thin films.

View Article and Find Full Text PDF

The microstructure of the solid-PbI2 precursor thin film plays an important role in the intercalation crystallization of the formamidinium lead triiodide perovskite (α-HC(NH2)2PbI3). It is shown that microstructurally engineered PbI2 thin films with porosity and low crystallinity are the most favorable for conversion into uniform-coverage, phase-pure α-HC(NH2)2PbI3 perovskite thin films. Planar perovskite solar cells fabricated using these thin films deliver power conversion efficiency (PCE) up to 13.

View Article and Find Full Text PDF