(1) Background: Liver metastases (LM) are the leading cause of death in colorectal cancer (CRC) patients. Despite advancements, relapse rates remain high and current prognostic nomograms lack accuracy. Our objective is to develop an interpretable neoadjuvant algorithm based on mathematical models to accurately predict individual risk, ensuring mathematical transparency and auditability.
View Article and Find Full Text PDFCancers (Basel)
August 2024
Introduction: Large Language Models (LLMs), such as the GPT model family from OpenAI, have demonstrated transformative potential across various fields, especially in medicine. These models can understand and generate contextual text, adapting to new tasks without specific training. This versatility can revolutionize clinical practices by enhancing documentation, patient interaction, and decision-making processes.
View Article and Find Full Text PDFCancers (Basel)
August 2023
Purpose: Severe toxicity is reported in about 30% of gastrointestinal cancer patients receiving 5-Fluorouracil (5-FU)-based chemotherapy. To date, limited tools exist to identify at risk patients in this setting. The objective of this study was to address this need by designing a predictive model using a Bayesian network, a probabilistic graphical model offering robust, explainable predictions.
View Article and Find Full Text PDFPurpose: The objectives of this study were the creation and validation of a screening tool for age-related macular degeneration (AMD) for routine assessment by primary care physicians, ophthalmologists, other healthcare professionals, and the general population.
Methods: A simple, self-administered questionnaire (Simplified Théa AMD Risk-Assessment Scale [STARS] version 4.0) which included well-established risk factors for AMD, such as family history, smoking, and dietary factors, was administered to patients during ophthalmology visits.