Publications by authors named "Onintza Sagredo"

Cannabidiol (CBD) has been recently approved as an antiseizure agent in Dravet Syndrome (DS), a pediatric epileptic encephalopathy, but CBD could also be active against associated comorbidities. Such associated comorbidities were also attenuated by the sesquiterpene β-caryophyllene (BCP). Here, we have compared the efficacy of both compounds and further initiated the analysis of a possible additive effect between both compounds in relation with these comorbidities using two experimental approaches.

View Article and Find Full Text PDF

Dravet syndrome (DS) is an epileptic encephalopathy caused by mutations in the gene encoding the α1 subunit of the Nav1.1 sodium channel, which is associated with recurrent and generalized seizures, even leading to death. In experimental models of DS, histological alterations have been found in the brain; however, the retina is a projection of the brain and there are no studies that analyze the possible histological changes that may occur in the disease.

View Article and Find Full Text PDF

Dravet Syndrome (DS) is caused by mutations in the Scn1a gene encoding the α1 subunit of the sodium channel Nav1.1, which results in febrile seizures that progress to severe tonic-clonic seizures and associated comorbidities. Treatment with cannabidiol has been approved for the management of seizures in DS patients, but it appears to be also active against associated comorbidities.

View Article and Find Full Text PDF

Dravet syndrome (DS) is an epileptic syndrome caused by mutations in the gene encoding the α1 subunit of the sodium channel Nav1.1, which is associated with febrile seizures that progress to severe tonic-clonic seizures and associated comorbidities. Treatment with cannabidiol has been approved to reduce seizures in DS, but it may also be active against these comorbidities.

View Article and Find Full Text PDF

Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids. These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they have also shown numerous therapeutic properties.

View Article and Find Full Text PDF

The endocannabinoid system exerts a crucial neuromodulatory role in many brain areas that is essential for proper regulation of neuronal activity. The role of cannabinoid signalling controlling neuronal activity in the adult brain is also evident when considering its contribution to adult brain insults or neurodegenerative diseases. In the context of brain genetic or acquired encephalopathies administration of cannabinoid-based molecules has demonstrated to exert symptomatic relief and hence, they are proposed as new potential therapeutic compounds.

View Article and Find Full Text PDF

Several cannabinoids afforded neuroprotection in experimental models of Huntington's disease (HD). We investigated whether a 1:1 combination of botanical extracts enriched in either ∆⁸-tetrahydrocannabinol (∆⁸-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is beneficial in R6/2 mice (a transgenic model of HD), as it was previously shown to have positive effects in neurotoxin-based models of HD. We recorded the progression of neurological deficits and the extent of striatal deterioration, using behavioral, in vivo imaging, and biochemical methods in R6/2 mice and their corresponding wild-type mice.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disease for which there is no curative treatment available. Given that the endocannabinoid system is involved in the pathogenesis of HD mouse models, stimulation of specific targets within this signaling system has been investigated as a promising therapeutic agent in HD. We conducted a double-blind, randomized, placebo-controlled, cross-over pilot clinical trial with Sativex(®), a botanical extract with an equimolecular combination of delta-9-tetrahydrocannabinol and cannabidiol.

View Article and Find Full Text PDF

Cannabidiol (CBD) reduces seizures in childhood epilepsy syndromes including Dravet syndrome (DS). A formulation of CBD has obtained orphan drug designation for these syndromes and clinical trials are currently underway. The mechanism responsible for CBD effects is not known, although it could involve targets sensitive to CBD in other neurological disorders.

View Article and Find Full Text PDF

Different plant-derived and synthetic cannabinoids have shown to be neuroprotective in experimental models of Huntington's disease (HD) through cannabinoid receptor-dependent and/or independent mechanisms. Herein, we studied the effects of cannabigerol (CBG), a nonpsychotropic phytocannabinoid, in 2 different in vivo models of HD. CBG was extremely active as neuroprotectant in mice intoxicated with 3-nitropropionate (3NP), improving motor deficits and preserving striatal neurons against 3NP toxicity.

View Article and Find Full Text PDF

The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e.

View Article and Find Full Text PDF

Cannabinoids are neuroprotective in models of neurodegenerative dementias. Their effects are mostly mediated through CB1 and CB2 receptor-dependent modulation of excitotoxicity, inflammation, oxidative stress, and other processes. We tested the effects of Sativex®, a mixture of Δ9-tetrahydrocannabinol and cannabidiol, acting on both CB1 and CB2 receptors, in parkin-null, human tau overexpressing (PK-/-/TauVLW) mice, a model of complex frontotemporal dementia, parkinsonism, and lower motor neuron disease.

View Article and Find Full Text PDF

We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington's disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers.

View Article and Find Full Text PDF

Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, anti-oxidant, anti-emetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and anti-oxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders.

View Article and Find Full Text PDF

Cannabinoid pharmacology has experienced a notable increase in the last 3 decades which is allowing the development of novel cannabinoid-based medicines for the treatment of different human pathologies, for example, Cesamet® (nabilone) or Marinol® (synthetic Δ9-tetrahydrocannabinol for oral administration) that were approved in 80s for the treatment of nausea and vomiting associated with chemotherapy treatment in cancer patients and in 90s for anorexiacachexia associated with AIDS therapy. Recently, the british company GW Pharmaceuticals plc has developed an oromucosal spray called Sativex®, which is constituted by an equimolecular combination of Δ9-tetrahydrocannabinol- and cannabidiol- enriched botanical extracts. Sativex® has been approved for the treatment of specific symptoms (i.

View Article and Find Full Text PDF

We report the synthesis of new compounds 4-35 based on structural modifications of different moieties of previously described lead UCM-2550. The new nonpiperazine derivatives, representing second-generation agonists, were assessed for binding affinity, selectivity, and functional activity at the 5-HT(1A) receptor (5-HT(1A)R). Computational β(2)-based homology models of the ligand-receptor complexes were used to explain the observed structure-affinity relationships.

View Article and Find Full Text PDF

We studied whether combinations of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, provide neuroprotection in rat models of Huntington's disease (HD). We used rats intoxicated with 3-nitropropionate (3NP) that were given combinations of Δ(9)-THC- and CBD-enriched botanical extracts. The issue was also studied in malonate-lesioned rats.

View Article and Find Full Text PDF

Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntington's disease and animal models.

View Article and Find Full Text PDF

Importance Of The Field: Cannabinoids have been proposed as clinically promising neuroprotective molecules, based on their capability to normalize glutamate homeostasis, reducing excitotoxicity, to inhibit calcium influx, lowering intracellular levels and the subsequent activation of calcium-dependent destructive pathways, and to reduce the generation of reactive oxygen intermediates or to limit their toxicity, decreasing oxidative injury. Cannabinoids are also able to decrease local inflammatory events by acting on glial processes that regulate neuronal survival, and to restore blood supply by reducing vasocontriction produced by several endothelium-derived factors.

Areas Covered In This Review: Current literature supporting these neuroprotective effects, particularly evidence generated during the last ten years, concentrating on targets within the cannabinoid signaling system that facilitate these effects.

View Article and Find Full Text PDF

Cannabinoid-derived drugs are promising agents for the development of novel neuroprotective strategies. Activation of neuronal CB(1) cannabinoid receptors attenuates excitotoxic glutamatergic neurotransmission, triggers prosurvival signalling pathways and palliates motor symptoms in animal models of neurodegenerative disorders. However, in Huntington's disease there is a very early downregulation of CB(1) receptors in striatal neurons that, together with the undesirable psychoactive effects triggered by CB(1) receptor activation, foster the search for alternative pharmacological treatments.

View Article and Find Full Text PDF

Cannabinoid agonists might serve as neuroprotective agents in neurodegenerative disorders. Here, we examined this hypothesis in a rat model of Huntington's disease (HD) generated by intrastriatal injection of the mitochondrial complex II inhibitor malonate. Our results showed that only compounds able to activate CB2 receptors were capable of protecting striatal projection neurons from malonate-induced death.

View Article and Find Full Text PDF

CB2 receptors, the so-called peripheral cannabinoid receptor type, were first described in the immune system, but they have been recently identified in the brain in healthy conditions and, in particular, after several types of cytotoxic stimuli. Specifically, CB2 receptors were identified in microglial cells, astrocytes and, to a lesser extent, in certain subpopulations of neurons. Given the lack of psychoactivity demonstrated by selective CB2 receptor agonists, this receptor becomes an interesting target for the treatment of neurological diseases, in particular, the case of certain neurodegenerative disorders in which induction/up-regulation of CB2 receptors has been already demonstrated.

View Article and Find Full Text PDF

Cannabinoids have been proposed as clinically promising neuroprotective molecules, as they are capable to reduce excitotoxicity, calcium influx, and oxidative injury. They are also able to decrease inflammation by acting on glial processes that regulate neuronal survival and to restore blood supply to injured area by reducing the vasoconstriction produced by several endothelium-derived factors. Through one or more of these processes, cannabinoids may provide neuroprotection in different neurodegenerative disorders including Parkinson's disease and Huntington's chorea, two chronic diseases that are originated as a consequence of the degeneration of specific nuclei of basal ganglia, resulting in a deterioration of the control of movement.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni9sc69gq9j55mt9gg4bmqav6it0ohjqv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once