Publications by authors named "Onesmo B Balemba"

Human gut microbiome richness, diversity, and composition are associated with physical activity and impaired glycemic control; however, the associations with sedentary behavior and screen time are not as well-established. This study evaluated associations of sedentary behavior and screen time with the alpha diversity and composition of the human gut microbiome in adults with and without impaired glycemic control. Sedentary behavior and screen time data were collected via survey from 47 adults (38% with impaired glycemic control).

View Article and Find Full Text PDF

Garcinia buchananii stem bark extract (GBB), commonly used for treating diarrhea in Africa, triggers ectopic aboral contractions, causing inhibition of propulsive motility in the colon ex vivo. To determine whether or not these effects were associated with decreased inhibitory neuromuscular transmission, the responsible constituent compounds, and mechanisms of action, we studied the effects of GBB and specific fractions and flavanones isolated from GBB on intestinal motility using pellet propulsion assays in guinea pig distal colons. In addition, microelectrode recordings were used to measure the effects on the inhibitory junction potentials (IJPs) in the porcine ileum and descending colon smooth muscle.

View Article and Find Full Text PDF

Alterations in the composition of the gut microbiota is thought to play a key role in causing type 2 diabetes, yet is not fully understood, especially at the strain level. Here, we used long-read DNA sequencing technology of 16S-ITS-23S rRNA genes for high-resolution characterization of gut microbiota in the development of type 2 diabetes. Gut microbiota composition was characterized from fecal DNA from 47 participants divided into 4 cohorts based on glycemic control: normal glycemic control (healthy; = 21), reversed prediabetes (prediabetes/healthy; = 8), prediabetes ( = 8), or type 2 diabetes ( = 10).

View Article and Find Full Text PDF

The enteric nervous system (ENS) regulates the motor, secretory and defensive functions of the gastrointestinal tract. Enteric neurons integrate mechanical and chemical inputs from the gut lumen to generate complex motor outputs. How intact enteric neural circuits respond to changes in the gut lumen is not well understood.

View Article and Find Full Text PDF

In 2000, we reported that human cytomegalovirus (HCMV) induced specific damage on chromosome 1. The capacity of the virus to induce DNA breaks indicated potent interaction between viral proteins and these loci. We have fine mapped the 1q42 breaksite.

View Article and Find Full Text PDF

Background: Damage to enteric neurons and impaired gastrointestinal muscle contractions cause motility disorders in 70% of diabetic patients. It is thought that enteric neuropathy and dysmotility occur before overt diabetes, but triggers of these abnormalities are not fully known. We tested the hypothesis that intestinal contents of mice with and without high-fat diet- (HFD-) induced diabetic conditions contain molecules that impair gastrointestinal movements by damaging neurons and disrupting muscle contractions.

View Article and Find Full Text PDF

Background: High-fat diet, microbial alterations and lipopolysaccharide (LPS) are thought to cause enteric diabetic neuropathy and intestinal dysmotility. However, the role of the gut microbiota, lipoteichoic acid (LTA) from Gram-positive bacteria and short-chain fatty acids (SCFAs) in the development of diabetic enteric neuropathy and intestinal dysmotility is not well understood. Our aim was to examine the role of the gut microbiota, LTA and SCFAs in the development of diabetic enteric neuropathy and intestinal dysmotility.

View Article and Find Full Text PDF

Congenital human cytomegalovirus (HCMV) infection causes a broad spectrum of central and peripheral nervous system disorders, ranging from microcephaly to hearing loss. These ramifications mandate the study of virus-host interactions in neural cells. Neural progenitor cells are permissive for lytic infection.

View Article and Find Full Text PDF

Thirty-four reference compounds from G. buchananii were analyzed by means of UPLC-ESI-IMS-TOF-MS to build a database consisting of retention time, accurate m/ z of precursors and fragment ions, and rotationally averaged collision cross-sectional area (CCS). The CCS value of six selected compounds analyzed in bark extract in different concentrations and solvent systems showed excellent intra- and interday precision (RSD ≤ 0.

View Article and Find Full Text PDF

Influenza viruses and rhinoviruses are responsible for a large number of acute respiratory viral infections in human populations and are detected as copathogens within hosts. Clinical and epidemiological studies suggest that coinfection by rhinovirus and influenza virus may reduce disease severity and that they may also interfere with each other's spread within a host population. To determine how coinfection by these two unrelated respiratory viruses affects pathogenesis, we established a mouse model using a minor serogroup rhinovirus (rhinovirus strain 1B [RV1B]) and mouse-adapted influenza A virus (A/Puerto Rico/8/1934 [PR8]).

View Article and Find Full Text PDF

Aim: Research has shown that moderate-to-vigorous physical activity (MVPA) is associated with higher health-related quality of life (HRQOL) in healthy individuals. Recent studies have suggested that low- to moderate-intensity physical activity can be beneficial to HRQOL in people with inflammatory bowel diseases (IBD); however, studies investigating associations between MVPA and HRQOL in this population are lacking.

Purpose: To understand the relationships among walking, MVPA, resilience, and HRQOL in people with IBD.

View Article and Find Full Text PDF

We investigated the antioxidative properties of (2R,3S,2″R,3″R)-manniflavanone (MF) using in vitro assays and examined its effects on myogenesis and lactate-induced oxidative stress in C2C12 cells. MF was purified from Garcinia buchananii stem bark. HO and oxygen radical absorbance capacity assays demonstrated that MF is a powerful antioxidant.

View Article and Find Full Text PDF

Comparative antioxidative analyses of aqueous ethanolic extracts from leaf, root, and stem of Garcinia buchananii revealed high activity of all three organs. To investigate the metabolite composition of the different parts of G. buchananii, an untargeted metabolomics approach using UPLC-ESI-TOF MS with simultaneous acquisition of low- and high-collision energy mass spectra (MS(e)) was performed.

View Article and Find Full Text PDF

Previous activity-guided phytochemical studies on Garcinia buchananii stem bark, which is traditionally used in Africa to treat various gastrointestinal and metabolic illnesses, revealed xanthones, polyisoprenylated benzophenones, flavanone-C-glycosides, biflavonoids, and/or biflavanones as bioactive key molecules. Unequivocal structure elucidation of biflavonoids and biflavanones by means of NMR spectroscopy is often complicated by the hindered rotation of the monomers around the C-C axis (atropisomerism), resulting in a high spectral complexity. In order to facilitate an unrestricted rotation, NMR spectra are usually recorded at elevated temperatures, commonly over 80 °C, which effects in a single set of resonance signals.

View Article and Find Full Text PDF

Symptoms of diabetic gastrointestinal dysmotility indicate neuropathy of the enteric nervous system. Long-standing diabetic enteric neuropathy has not been fully characterized, however. We used prolonged high fat diet ingestion (20 weeks) in a mouse model to mimic human obese and type 2 diabetic conditions, and analyzed changes seen in neurons of the duodenal myenteric plexus.

View Article and Find Full Text PDF

An aqueous ethanolic extract of the stem bark of Garcinia buchananii showed strong antioxidative activity using H2O2 scavenging, oxygen radical absorbance capacity (ORAC), and Trolox equivalent antioxidant capacity (TEAC) assays. Activity-guided fractionation afforded three new compounds, isomanniflavanone (1), an ent-eriodictyol-(3α→6)-dihydroquercetin-linked biflavanone, 1,5-dimethoxyajacareubin (2), and the depsidone garcinisidone-G (3), and six known compounds, (2″R,3″R)-preussianon, euxanthone, 2-isoprenyl-1,3,5,6-tetrahydroxyxanthone, jacareubin, isogarcinol, and garcinol. All compounds were described for the first time in Garcinia buchananii.

View Article and Find Full Text PDF

Garcinia buchananii Baker stem bark extract (GBB) is a traditional medication of diarrhea and dysentery in sub-Saharan Africa. It is believed that GBB causes gastrointestinal smooth muscle relaxation. The aim of this study was to determine whether GBB has spasmolytic actions and identify compounds underlying these actions.

View Article and Find Full Text PDF

Polymorphonuclear neutrophils (PMN) infiltrate the respiratory tract early after viral infection and can contribute to both host defence and pathology. Coronaviruses are important causes of respiratory tract infections, ranging from mild to severe depending on the viral strain. This study evaluated the role of PMN during a non-fatal pulmonary coronavirus infection in the natural host.

View Article and Find Full Text PDF

Very recently, we described highly antioxidative polyphenols isolated from the stem bark extract of the Garcinia buchananii tree. In this study, we describe additional antioxidants from Garcinia buchananii bark extract using hydrogen peroxide scavenging, oxygen radical absorbance capacity (ORAC), and trolox equivalent antioxidant capacity (TEAC) assays. UPLC-HR-ESI-TOF-MS(e) analysis, 1- and 2D-NMR, and circular dichroism (CD) spectroscopy led to the unequivocal identification of the antioxidative molecules as a series of five 3,8″-linked biflav(an)ones and two flavanone-C-glycosides.

View Article and Find Full Text PDF

There is a growing need to find the most appropriate and effective treatment options for a variety of painful syndromes, including conditions affecting the gastrointestinal tract, for treating both veterinary and human patients. The most successful regimen may come through integrated therapies including combining current and novel western drugs with acupuncture and botanical therapies or their derivatives. There is an extensive history and use of plants in African traditional medicine.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: The extract from the stem bark of Garcinia buchananii trees is used as an anti-diarrhea remedy in sub-Saharan Africa. We tested the hypothesis that G. buchananii bark extract and its anti-motility fractions are effective treatments against lactose-induced diarrhea.

View Article and Find Full Text PDF

The aim of this study was to identify antioxidants from Garcinia buchananii bark extract using hydrogen peroxide scavenging and oxygen radical absorbance capacity (ORAC) assays. LC-MS/MS analysis, 1D- and 2D-NMR, and circular dichroism (CD) spectroscopy led to the unequivocal identification of the major antioxidative molecules as a series of three 3,8″-linked biflavanones and two flavanone-C-glycosides. Besides the previously reported (2R,3R,2″R,3″R)-naringenin-C-3/C-8″ dihydroquercetin linked biflavanone (GB-2; 4) and (2R,3S,2″R,3″R)-manniflavanone (3), whose stereochemistry has been revised, the antioxidants identified for the first time in Garcinia buchananii were (2R,3R)-taxifolin-6-C-β-D-glucopyranoside (1), (2R,3R)-aromadendrin-6-C-β-D-glucopyranoside (2), and the new compound (2R,3S,2″S)-buchananiflavanone (5).

View Article and Find Full Text PDF

Background & Aims: 5-hydroxytryptamine receptor (5-HT(4)R) agonists promote gastrointestinal motility and attenuate visceral pain, but concerns about adverse reactions have restricted their availability. We tested the hypotheses that 5-HT(4) receptors are expressed in the colonic epithelium and that 5-HT(4)R agonists can act intraluminally to increase motility and reduce visceral hypersensitivity.

Methods: Mucosal expression of the 5-HT(4)R was evaluated by reverse-transcriptase polymerase chain reaction and immunohistochemical analysis of tissues from 5-HT(4)R(BAC)-enhanced green fluorescent protein mice.

View Article and Find Full Text PDF