Publications by authors named "Onesia C Oliveira-Lima"

Glycine Transporter Type 1 (GlyT1) inhibition confers neuroprotection against different forms of cerebral damage. This effect occurs through the elevation of synaptic glycine concentrations, which enhances N-methyl-d-aspartate receptor (NMDAR) activation by glutamate. To investigate the neuroprotective mechanism of GlyT1 inhibition, we used the Middle Cerebral Artery Occlusion (MCAO) model in male C57BL/6 mice, aged 10-12 weeks.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β, leading to N-methyl-D-aspartate (NMDA) receptor-dependent synaptic depression, spine elimination, and memory deficits. Glycine transporter type 1 (GlyT1) modulates glutamatergic neurotransmission via NMDA receptors (NMDAR), presenting a potential alternative therapeutic approach for AD. This study investigates the neuroprotective potential of GlyT1 inhibition in an amyloid-β-induced AD mouse model.

View Article and Find Full Text PDF

The striatum, an essential component of the brain's motor and reward systems, plays a pivotal role in a wide array of cognitive processes. Its dysfunction is a hallmark of neurodegenerative diseases like Parkinson's disease (PD) and Huntington's disease (HD), leading to profound motor and cognitive deficits. These conditions are often related to excitotoxicity, primarily due to overactivation of NMDA receptors (NMDAR).

View Article and Find Full Text PDF

The glutamatergic hypothesis of schizophrenia suggests a correlation between NMDA receptor hypofunction and negative psychotic symptoms. It has been observed that the expression of the proline transporter (PROT) in the central nervous system (CNS) is associated with glutamatergic neurotransmission, as L-proline has the capacity to activate and modulate AMPA and NMDA receptors. In this study, we aimed to investigate whether inhibition of proline transporters could enhance glutamatergic neurotransmission and potentially exhibit antipsychotic effects in an experimental schizophrenia model.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by neuroinflammation leading to demyelination. The associated symptoms lead to a devastating decrease in quality of life. The cannabinoids and their derivatives have emerged as an encouraging alternative due to their management of symptom in MS.

View Article and Find Full Text PDF

Rationale: The FDA-approved Dimethyl Fumarate (DMF) as an oral drug for Multiple Sclerosis (MS) treatment based on its immunomodulatory activities. However, it also caused severe adverse effects mainly related to the gastrointestinal system.

Objective: Investigated the potential effects of solid lipid nanoparticles (SLNs) containing DMF, administered by inhalation on the clinical signs, central nervous system (CNS) inflammatory response, and lung function changes in mice with experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

Astrocytes are highly specialized glial cells responsible for trophic and metabolic support of neurons. They are associated to ionic homeostasis, the regulation of cerebral blood flow and metabolism, the modulation of synaptic activity by capturing and recycle of neurotransmitters and maintenance of the blood-brain barrier. During injuries and infections, astrocytes act in cerebral defense through heterogeneous and progressive changes in their gene expression, morphology, proliferative capacity, and function, which is known as reactive astrocytes.

View Article and Find Full Text PDF

Glycine transporters (GlyTs) are Na/Cl-dependent neurotransmitter transporters, responsible for l-glycine uptake into the central nervous system. GlyTs are members of the solute carrier family 6 (SLC6) and comprise glycine transporter type 1 (SLC6A9; GlyT1) and glycine transporter type 2 (SLC6A5; Glyt2). GlyT1 and GlyT2 are expressed on both astrocytes and neurons, but their expression pattern in brain tissue is foremost related to neurotransmission.

View Article and Find Full Text PDF

Vascular dementia (VD) is a major cognitive disorder originated from a blood flow disruption in the brain. This process leads to chronic cerebral ischemia that deeply affects neuronal tissues and lipid homeostasis. The understanding of cerebral lipid dynamics during chronic ischemia can reveal biomarkers and novel pharmacological targets for the treatment of VD.

View Article and Find Full Text PDF

C57BL/6 mice infected with Plasmodium berghei ANKA (PbA) develop neurological symptoms and die 6--7-day post-inoculation in the absence of high parasitemia. The effects of chronic intake of a high-fat diet on this process are largely unknown. In this study, we assessed the effect of a high-fat diet on the host-parasite response to malarial infection.

View Article and Find Full Text PDF

It is well-established that bacterial lipopolysaccharides (LPS) can promote neuroinflammation through receptor Toll-like 4 activation and induces sickness behavior in mice. This phenomenon triggers changes in membranes lipid dynamics to promote the intracellular cell signaling. Desorption electrospray ionization mass spectrometry (DESI-MS) is a powerful technique that can be used to image the distribution of lipids in the brain tissue directly.

View Article and Find Full Text PDF

Neurogenesis is the process by which new neurons are generated in the brain. Neural stem cells (NSCs) are differentiated into neurons, which are integrated into the neural network. Nowadays, pluripotent stem cells, multipotent stem cells, and induced pluripotent stem cells can be artificially differentiated into neurons utilizing several techniques.

View Article and Find Full Text PDF

Stroke consists of an abrupt reduction of cerebral blood flow resulting in hypoxia that triggers an excitotoxicity, oxidative stress, and neuroinflammation. After the ischemic process, neural precursor cells present in the subventricular zone of the lateral ventricle and subgranular zone of the dentate gyrus proliferate and migrate towards the lesion, contributing to the brain repair. The neurogenesis is induced by signal transduction pathways, growth factors, attractive factors for neuroblasts, transcription factors, pro and anti-inflammatory mediators and specific neurotransmissions.

View Article and Find Full Text PDF

In addition to the well-known functions as a neurotransmitter, acetylcholine (ACh) can modulate of the immune system. Nonetheless, how endogenous ACh release inflammatory responses is still not clear. To address this question, we took advantage of an animal model with a decreased ACh release due a reduction (knockdown) in vesicular acetylcholine transporter (VAChT) expression (VAChT-KD(HOM)).

View Article and Find Full Text PDF

Beyond the classical actions of the renin-angiotensin system on the regulation of cardiovascular homeostasis, several studies have shown its involvement in acute and chronic inflammation. The G protein-coupled receptor Mas is a functional binding site for the angiotensin-(1-7); however, its role in the immune system has not been fully elucidated. In this study, we evaluated the effect of genetic deletion of Mas receptor in lipopolysaccharide (LPS)-induced systemic and cerebral inflammation in mice.

View Article and Find Full Text PDF

The analysis of amino acid levels is crucial for neuroscience studies because of the roles of these molecules as neurotransmitters and their influence on behavior. The present study describes the distribution and levels of 16 amino acids (alanine, asparagine, aspartic acid, cysteine, glycine, glutamic acid, isoleucine, leucine, lysine, methionine, phenylalanine, proline, sarcosine, serine, valine, and threonine) in brain tissues (prefrontal cortex, striatum, hippocampus and cerebellum) and the serum. Neurochemical analysis was performed on Wistar rats and C57BL/6 mice using an efficient method for extraction, a fast microwave-assisted derivatization and gas chromatography-mass spectrometry analysis.

View Article and Find Full Text PDF

The interactions between a prior program of regular exercise and the development of experimental autoimmune encephalomyelitis (EAE)-mediated responses were evaluated. In the exercised EAE mice, although there was no effect on infiltrated cells, the cytokine and derived neurotrophic factor (BDNF) levels were altered, and the clinical score was attenuated. Although, the cytokine levels were decreased in the brain and increased in the spinal cord, BDNF was elevated in both compartments with a tendency of lesser demyelization volume in the spinal cord of the exercised EAE group compared with the unexercised.

View Article and Find Full Text PDF

Infection of mice with Plasmodium berghei NK65 represents a well-recognized malaria model in which infection is accompanied by an intense hepatic inflammatory response. Enzyme-inducible nitric oxide synthase is an important regulator of inflammation and leukocyte recruitment in microvessels, but these functions have yet to be evaluated in experimental malaria. In this study, we assessed the involvement of inducible nitric oxide synthase in inflammatory responses to murine experimental malaria induced by P.

View Article and Find Full Text PDF