Flavin cofactors, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), as a part of flavoenzymes play a critical role in the catalysis of multiple reactions predominantly of a redox nature. Question arises why nature developed two very similar cofactors with an identical functional part - isoalloxazine ring. We believe that an answer is related to the fact that the isoalloxazine ring belongs to endogenous photosensitizers able to produce reactive and potentially harmful singlet oxygen, O, with high efficiency, Φ ∼ 0.
View Article and Find Full Text PDFFlavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are frequently used interchangeably in the catalysis of various reactions as part of flavoenzymes because they have the same functional component, the isoalloxazine ring. However, they differ significantly in their conformational properties. The inclusion of two planar rings in the structure of FAD greatly increases the range of possible conformations compared to FMN.
View Article and Find Full Text PDFFlavin mononucleotide (FMN) is a highly efficient photosensitizer (PS) yielding singlet oxygen ( O ). However, its O production efficiency significantly decreases upon isoalloxazine ring encapsulation into the protein matrix in genetically encoded photosensitizers (GEPS). Reducing isoalloxazine ring interactions with surrounding amino acids by protein engineering may increase O production efficiency GEPS, but at the same time weakened native FMN-protein interactions may cause undesirable FMN dissociation.
View Article and Find Full Text PDFRare earth elements (REEs), critical to modern industry, are difficult to separate and purify, given their similar physicochemical properties originating from the lanthanide contraction. Here, we systematically study the transport of lanthanide ions (Ln) in artificially confined angstrom-scale two-dimensional channels using MoS-based building blocks in an aqueous environment. The results show that the uptake and permeability of Ln assume a well-defined volcano shape peaked at Sm.
View Article and Find Full Text PDFEmulating angstrom-scale dynamics of the highly selective biological ion channels is a challenging task. Recent work on angstrom-scale artificial channels has expanded our understanding of ion transport and uptake mechanisms under confinement. However, the role of chemical environment in such channels is still not well understood.
View Article and Find Full Text PDFInspired by the conventional use of ethanol to induce DNA precipitation, ethanol condensation has been applied as a routine method to dynamically tune "bond" lengths (i.e., the surface-to-surface distances between adjacent nanoparticles that are linked by DNA) and thermal stabilities of colloidal crystals involving DNA-linked nanoparticles.
View Article and Find Full Text PDFMXenes, two-dimensional metal carbides or nitrides with multifunctional surfaces, are one of the most promising antibacterial nanoscale materials. However, their putative bactericidal mechanism is elusive. To study their bactericidal mechanism, we investigated the interaction between a MXene nanosheet and a model bacterial membrane by molecular dynamics simulations and found that an adsorbed MXene on a membrane surface induced a local phase transition in a domain where the fluidity of the phospholipid in this domain at room temperature was comparable with that of the gel phase.
View Article and Find Full Text PDFRecording neural activity from the living brain is of great interest in neuroscience for interpreting cognitive processing or neurological disorders. Despite recent advances in neural technologies, development of a soft neural interface that integrates with neural tissues, increases recording sensitivity, and prevents signal dissipation still remains a major challenge. Here, we introduce a biocompatible, conductive, and biostable neural interface, a supramolecular β-peptide-based hydrogel that allows signal amplification via tight neural/hydrogel contact without neuroinflammation.
View Article and Find Full Text PDFMembranes (Basel)
December 2019
We performed molecular dynamics simulations of water molecules inside a hydrophobic membrane composed of stacked graphene sheets. By decreasing the density of water molecules inside the membrane, we observed that water molecules form a droplet through a hydrogen bond with each other in the hydrophobic environment that stacked graphene sheets create. We found that the water droplet translates as a whole body rather than a dissipate.
View Article and Find Full Text PDFHighly stable and stimuli/pH-responsive ultrasmall polymer-grafted nanobins (usPGNs) have been developed by grafting a small amount (10 mol %) of short (4.3 kDa) cholesterol-terminated poly(acrylic acid) (Chol-PAA) into an ultrasmall unilamellar vesicle (uSUV). The usPGNs are stable against fusion and aggregation over several weeks, exhibiting over 10-fold enhanced cargo retention in biologically relevant media at pH 7.
View Article and Find Full Text PDFPeptide assemblies have received significant attention because of their important role in biology and applications in bionanotechnology. Despite recent efforts to elucidate the principles of peptide self-assembly for developing novel functional devices, peptide self-assembly on two-dimensional nanomaterials has remained challenging. Here, we report nature-inspired two-dimensional peptide self-assembly on pristine graphene via optimization of peptide-peptide and peptide-graphene interactions.
View Article and Find Full Text PDFMolecular transport junctions (MTJs) are important components in molecular electronic devices. However, the synthesis of MTJs remains a significant challenge, as the dimensions of the junction must be tailored for each experiment, based on the molecular lengths. A novel methodology is reported for forming MTJs, taking advantage of capillary and van der Waals forces.
View Article and Find Full Text PDFGiven their relevance to drug design and chemical sensing, host-guest interactions are of broad interest in molecular science. Natural and synthetic host molecules provide vehicles for understanding selective molecular recognition in aqueous solution. Here, cryptophane-Xe host-guest systems are considered in aqueous media as a model molecular system that also has important applications.
View Article and Find Full Text PDFWe have employed molecular dynamics simulations and quantum chemistry methods to study the structures and electronic absorption properties of a novel type of photonic nanowire gel constructed by the self-assembly of peptide amphiphiles (PAs) and the chromophore-(PPIX)Zn molecules. Using molecular dynamics simulations, structures of the self-assembled fiber were determined with atomistic detail, including the distribution of chromophores along the nanofiber and the relative distances and orientations of pairs of chromophores. In addition, quantum chemistry calculations were used to determine the electronic structure and absorption properties of the chromophores in the fiber, so as to assess the capabilities of the nanofiber for photonics applications.
View Article and Find Full Text PDFMany naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood.
View Article and Find Full Text PDFThe highly charged, conjugated polymer poly[p-{2,5-bis(3-propoxysulfonicacidsodiumsalt)}phenylene]ethynylene (PPES) has been shown to wrap single-wall carbon nanotubes (SWNTs), adopting a robust helical superstructure. Surprisingly, PPES adopts a helical rather than a linear conformation when adhered to SWNTs. The complexes formed by PPES and related polymers upon helical wrapping of a SWNT are investigated using atomistic molecular dynamics (MD) simulations in the presence and absence of aqueous solvent.
View Article and Find Full Text PDFSteered molecular dynamics (SMD) simulations were applied to determine the potential of mean force for the self-assembly of peptide amphiphile (PA) nanofibers, specifically considering a single PA adding to a growing cylindrical nanofiber at 310 K. It is found that the free energy, enthalpy, and entropy differences for this assembly process are -67 kcal/mol, -71.5 kcal/ml, and -14.
View Article and Find Full Text PDFNanodiamonds (NDs) are emerging carbon platforms with promise as gene/drug delivery vectors for cancer therapy. Specifically, NDs functionalized with the polymer polyethylenimine (PEI) can transfect small interfering RNAs (siRNA) in vitro with high efficiency and low cytotoxicity. Here we present a modeling framework to accurately guide the design of ND-PEI gene platforms and elucidate binding mechanisms between ND, PEI, and siRNA.
View Article and Find Full Text PDFWe have studied the self-assembly of peptide amphiphiles (PAs) into a cylindrical micelle fiber starting from a homogeneous mixture of PAs in water using coarse-grained molecular dynamics simulations. Nine independent 16 μs runs all show spontaneous fiber formation in which the PA molecules first form spherical micelles, and then micelles form a three-dimensional network via van der Waals interactions. As the hydrophobic core belonging to the different micelles merge, the three-dimensional network disappears and a fiber having a diameter of ∼80 Å appears.
View Article and Find Full Text PDFMolecular dynamics simulations have been performed to characterize the conformation of DNA that is present when DNA links gold nanoparticles to form nanoparticle superlattice crystals. To model the DNA-linked gold nanoparticles, four strands of DNA are used to connect two gold surfaces, with a small interstrand separation and high added salt to match experiment. A-form DNA was assumed for the initial conformation, as this form of DNA has a length per base-pair that matches lengths that have been inferred from X-ray measurements.
View Article and Find Full Text PDFNanoscale drug delivery platforms can provide an attractive therapeutic strategy for cancer treatments, as they can substantially reduce the adverse side effects associated with toxic small-molecule anticancer agents. For enhanced therapeutic efficacy to be achieved with such platforms, a tumor-specific drug-release trigger is a critical requirement. This article reports the use of a pH-sensitive polymer network that surrounds a nanoscale liposome core to trigger the release of both encapsulated hydrophilic, membrane-impermeable Ni(II) cations and amphipathic, membrane-permeable As(III) anticancer agents under acidic conditions commonly encountered in hypoxic tumor tissues and late endosomes.
View Article and Find Full Text PDFWe develop a shape-based coarse-grained (SBCG) model for DNA-functionalized gold nanoparticles (DNA-Au NPs) and use this to study the interaction of this potential antisense therapeutic with a lipid bilayer model of a cell membrane that is also represented using a coarse-grained model. Molecular dynamics simulations of the SBCG model of the DNA-Au NP show structural properties which coincide with our previous atomistic models of this system. The lipid membrane is composed of 30% negatively charged lipid (1,2-dioleoyl-sn-glycero-3-phosphoserine, DOPS) and 70% neutral lipid (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) in 0.
View Article and Find Full Text PDFRelaxation of a self-assembled structure of 144 peptide amphiphile (PA) molecules into cylindrical nanofibers is studied using atomistic molecular dynamics simulations including explicit water with physiological ion concentration. The PA for these studies includes a hydrophobic alkyl chain that is attached to the N-terminus of the sequence SLSLAAAEIKVAV. The self-assembly is initiated with PA molecules in a roughly cylindrical configuration, as suggested from previous experimental and theoretical investigations, and the cylindrical configuration that results is found to be stable during 40 ns simulations.
View Article and Find Full Text PDFA gyroscope-inspired tribenzylamine hemicryptophane provides a vehicle for exploring the structure and properties of multiple p-phenylene rotators within one molecule. The hemicryptophane was synthesized in three steps in good overall yield using mild conditions. Three rotator-forming linkers were cyclized to form a rigid cyclotriveratrylene (CTV) stator framework, which was then closed with an amine.
View Article and Find Full Text PDF