Publications by authors named "Ondrej Stranik"

We followed over 24 h a corrosion process in monocrystalline triangular-shaped nanoparticles at a single-particle level by atomic force microscopy and optical spectroscopy techniques under ambient laboratory conditions. The triangular-shaped form of the particles was selected, because the crystallographic orientation of the particles is well defined upon their deposition on a substrate. We observed that the particles already start to alter within this time frame.

View Article and Find Full Text PDF

In this work we describe a very fast and flexible method for fabrication of plasmon-supporting substrates with micro-patterning capability, which is optimized for plasmonic sensing. We combined a wet chemistry approach to synthesize metallic nanoparticles with a piezo-dispensing system enabling deposition of nanoparticles on the substrates with micrometer precision. In this way, an arbitrary pattern consisting of 200 μm small spots containing plasmonic nanostructures can be produced.

View Article and Find Full Text PDF

In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots are functionalized with capture DNA sequences complementary to the analyte (target) DNA.

View Article and Find Full Text PDF
Article Synopsis
  • Silica nanoparticles (SiNP) tend to clump together when stored in water, leading to unstable structures; however, using responsive hydrogels effectively keeps them stable and maintains their shape.
  • Storing SiNP in hydrogel prevents core dissolution, which is important for applications like targeted drug delivery.
  • Toxicity tests using both in vitro human cells and ex ovo hen's eggs showed that SiNP in hydrogel, as well as the hydrogel alone, are safe at concentrations up to 100 µg/mL, demonstrating their compatibility without causing harmful effects.
View Article and Find Full Text PDF

Bioanalytical sensing based on the principle of localized surface plasmon resonance experiences is currently an extremely rapid development. Novel sensors with new kinds of plasmonic transducers and innovative concepts for the signal development as well as read-out principles were identified. This review will give an overview of the development of this field.

View Article and Find Full Text PDF

Peroxidase-mimicking DNAzyme was applied as a catalyst of silver deposition on gold nanoparticles. This DNAzyme is formed when hemin binds to the G-quadruplex-forming DNA sequence. Such a system is able to catalyze a redox reaction with a one- or two-electron transfer.

View Article and Find Full Text PDF

Plasmon-based sensors are excellent tools for a label-free detection of small biomolecules. An interesting group of such sensors are plasmonic nanorulers that rely on the plasmon hybridization upon modification of their morphology to sense nanoscale distances. Sensor geometries based on the interaction of plasmons in a flat metallic layer together with metal nanoparticles inherit unique advantages but need a special optical excitation configuration that is not easy to miniaturize.

View Article and Find Full Text PDF

The spectroscopy of metal nanoparticles shows great potential for label-free sensing. In this article we present a hyper-spectral imaging system combined with a microfluidic system, which allows full spectroscopic characterization of many individual nanoparticles simultaneously (>50 particles). With such a system we were able overcome several limitations that are present in LSPR sensing with nanoparticle ensemble.

View Article and Find Full Text PDF

We demonstrate an excitation transfer along a fluorescently labeled dsDNA nanowire over a length of several micrometers. Launching of the excitation is done by exciting a localized surface plasmon mode of a 40 nm silver nanoparticle by 800 nm femtosecond laser pulses via two-photon absorption. The plasmonic mode is subsequently coupled or transformed to excitation in the nanowire in contact with the particle and propagated along it, inducing bleaching of the dyes on its way.

View Article and Find Full Text PDF

Certain metal nanoparticles exhibit the effect of localized surface plasmon resonance when interacting with light, based on collective oscillations of their conduction electrons. The interaction of this effect with molecules is of great interest for a variety of research disciplines, both in optics and in the life sciences. This paper attempts to describe and structure this emerging field of molecular plasmonics, situated between the molecular world and plasmonic effects in metal nanostructures, and demonstrates the potential of these developments for a variety of applications.

View Article and Find Full Text PDF

The sensitivities of five different core-shell nanostructures were investigated towards changes in the refractive index of the surrounding medium. The shift of the localized surface plasmon resonance (LSPR) maximum served as a measure of the (respective) sensitivity. Thus, gold-silver core-shell nanoparticles (NPs) were prepared with different shell thicknesses in a two-step chemical process without the use of any (possibly disturbing) surfactants.

View Article and Find Full Text PDF

Four widely used electromagnetic field solvers are applied to the problem of scattering by a spherical or spheroidal silver nanoparticle in glass. The solvers are tested in a frequency range where the imaginary part of the scatterer refractive index is relatively large. The scattering efficiencies and near-field results obtained by the different methods are compared to each other, as well as to recent experiments on laser-induced shape transformation of silver nanoparticles in glass.

View Article and Find Full Text PDF

In this work, we used a model assay system (polyclonal human IgG-goat antihuman IgG) to elucidate some of the key factors that influence the analytical performance of bioassays that employ metal-enhanced fluorescence (MEF) using silver nanoparticles (NPs). Cy5 dye was used as the fluorescent label, and results were compared with a standard assay performed in the absence of NPs. Two sizes of silver NPs were prepared with respective diameters of 60 +/- 10 and 149 +/- 16 nm.

View Article and Find Full Text PDF

In this paper, we describe a novel technique for depositing metal nanoparticles (NPs) on a planar substrate whereby the NPs are micro-patterned on the surface by a simple stamp-printing procedure. The method exploits the attractive force between negatively charged colloidal metal NPs and positively-charged polyelectrolyte layers which have been selectively deposited on the surface. Using this technique, large uniform areas of patterned metal NPs, with different plasmonic properties, were achieved by optimisation of the stamping process.

View Article and Find Full Text PDF

This article describes strategies for achieving fluorescence enhancement in optical biochips. Two strategies are discussed: plasmonic enhancement, which is due to the localized surface plasmon resonance of metal nanostructures that are adjacent to the fluorescent labels in optical immunoassays; and the use of high-brightness silica nanoparticles as enhanced labels. We present a review of the state-of-the-art in both areas, including synthesis techniques for the metal and silica nanoparticles and the use of the nanoparticles in optical immunoassays.

View Article and Find Full Text PDF

There is substantial interest in the development of near-infrared dye-doped nanoparticles (NPs) for a range of applications including immunocytochemistry, immunosorbent assays, flow cytometry, and DNA/protein microarray analysis. The main motivation for this work is the significant increase in NP fluorescence that may be obtained compared with a single dye label, for example Cy5. Dye-doped NPs were synthesised and a reduction in fluorescence as a function of dye concentration was correlated with the occurrence of homo-Förster resonance energy transfer (HFRET) in the NP.

View Article and Find Full Text PDF

In this work, we report on the uniform deposition of tailored plasmonic coatings on polymer substrates and on the distance dependence of the plasmonic enhancement of a fluorescent dye. Silver, gold, and silver/gold alloy nanoparticles (NPs) with a range of diameters were synthesized using chemical techniques and characterized using UV-vis absorption spectroscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). Reproducible polyelectrolyte (PEL) layers, which were deposited on plastic microwell plates using a layer-by-layer technique, served as both a stable and uniform substrate for deposition of the NPs as well as providing spacer layers of known thickness between the NPs and the fluorescent dye.

View Article and Find Full Text PDF