A series of mono-, di-, and tri-guanidinylated derivatives of neamine were prepared via selective guanidinylation of neamine. These molecules represent a novel scaffold as inhibitors of anthrax lethal factor zinc metalloprotease. Methods for the synthesis of these compounds are described, and structure-activity relationships among the series are analyzed.
View Article and Find Full Text PDFBackground: Anthrax is a human disease that results from infection by the bacteria, Bacillus anthracis and has recently been used as a bioterrorist agent. Historically, this disease was associated with Bacillus spore exposure from wool or animal carcasses. While current vaccine approaches (targeted against the protective antigen) are effective for prophylaxis, multiple doses must be injected.
View Article and Find Full Text PDFThe glycosylamines of O-acetyl-protected GlcNAc and chitobiose, as well as two partially unprotected 1-C-aminomethyl glucosides, were photochemically coupled with orthogonally protected N-aspartyl-5-bromo-7-nitroindoline derivatives. The reactions proceeded under neutral conditions by irradiation with near-UV light. The glycosyl asparagines with N- or C-glycosyl linkages were afforded in 60-85% yield on a 10-70 mg scale.
View Article and Find Full Text PDF