Publications by authors named "Ondrej Santolik"

Article Synopsis
  • The Comet Interceptor mission aims to explore a long-period comet or an interstellar object entering our Solar System, with a focus on its surface composition, shape, and the composition of its gas and dust.
  • Proposed to the European Space Agency in 2018 and approved in June 2022, it is set to launch in 2029 alongside the Ariel mission, utilizing a low-cost approach that allows it to wait for a suitable target comet.
  • The mission will feature a main probe and two sub-probes (B1 from JAXA and B2), providing simultaneous, detailed 3D information about the comet and its interaction with the solar wind, making it unique compared to previous missions.
View Article and Find Full Text PDF

ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere.

View Article and Find Full Text PDF

Our knowledge about the fine structure of lightning processes at Jupiter was substantially limited by the time resolution of previous measurements. Recent observations of the Juno mission revealed electromagnetic signals of Jovian rapid whistlers at a cadence of a few lightning discharges per second, comparable to observations of return strokes at Earth. The duration of these discharges was below a few milliseconds and below one millisecond in the case of Jovian dispersed pulses, which were also discovered by Juno.

View Article and Find Full Text PDF

We compare ESA PROBA-V observations of electron flux at LEO with those from the NASA Van Allen Probes mostly at MEO for October 2013. Dropouts are visible at all energy during four storms from both satellites. Equatorially trapped electron fluxes are higher than at LEO by 10 (<1 MeV) to 10 (>2.

View Article and Find Full Text PDF

Intense electromagnetic impulses induced by Jupiter's lightning have been recognised to produce both low-frequency dispersed whistler emissions and non-dispersed radio pulses. Here we report the discovery of electromagnetic pulses associated with Jovian lightning. Detected by the Juno Waves instrument during its polar perijove passes, the dispersed millisecond pulses called Jupiter dispersed pulses (JDPs) provide evidence of low density holes in Jupiter's ionosphere.

View Article and Find Full Text PDF

Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range .

View Article and Find Full Text PDF

We analyze lightning initiation process using magnetic field waveforms of preliminary breakdown (PB) pulses observed at time scales of a few tens of microseconds by a broad-band receiver. We compare these pulses with sources of narrow-band very high frequency (VHF) radiation at 60-66 MHz recorded by two separate Lightning Mapping Arrays (LMAs). We find that almost none of the observed PB pulses correspond to geo-located VHF radiation sources, in agreement with previous results and with the hypothesis that processes generating VHF radiation and PB pulses are only weakly related.

View Article and Find Full Text PDF

All lightning strokes generate electromagnetic pulses -atmospherics- which can travel over distances of thousands of kilometers. Night-side atmospherics show typical frequency dispersion signatures caused by sub-ionospheric propagation. Their analysis can be used to determine the distance to the source lightning, and therefore it represents a safe tool for investigation of distant thunderstorms, as well as for indirect observations of the lower ionosphere.

View Article and Find Full Text PDF

A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as 'equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided.

View Article and Find Full Text PDF