There is a well-established link between abnormal sperm chromatin states and poor motility, however, how these two processes are interdependent is unknown. Here, we identified a possible mechanistic insight by showing that Protamine 2, a nuclear DNA packaging protein in sperm, directly interacts with cytoskeletal protein Septin 12, which is associated with sperm motility. Septin 12 has several isoforms, and we show, that in the sperm, the short one (Mw 36 kDa) is mis-localized, while two long isoforms (Mw 40 and 41 kDa) are unexpectedly lost in sperm chromatin-bound protein fractions.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Background: Inflammation-induced testicular damage is a significant contributing factor to the increasing incidence of infertility. Traditional treatments during the inflammatory phase often fail to achieve the desired fertility outcomes, necessitating innovative interventions such as cell therapy.
Methods: We explored the in vivo properties of intravenously administered Sertoli cells (SCs) in an acute lipopolysaccharide (LPS)-induced inflammatory mouse model.
There is a well-established link between abnormal sperm chromatin states and poor motility, however, how these two processes are interdependent is unknown. Here, we identified a possible mechanistic insight by showing that Protamine 2, a nuclear DNA packaging protein in sperm, directly interacts with cytoskeletal protein Septin 12, which is associated with sperm motility. Septin 12 has several isoforms, and we show, that in the sperm, the short one (Mw 36 kDa) is mislocalized, while two long isoforms (Mw 40 and 41 kDa) are unexpectedly lost in sperm chromatin-bound protein fractions.
View Article and Find Full Text PDF