We report a new synthetic strategy for the flexible preparation of forskolin-like molecules. The approach is different from the previously published works and employs a convergent assembly of the tricyclic labdane-type core from pre-functionalized cyclic building blocks. Stereoselective Michael addition enabled the fragment coupling with excellent control over three newly created contiguous stereocenters, all-carbon quaternary centers included.
View Article and Find Full Text PDFA broad spectrum of tumors develop resistance to classic chemotherapy, necessitating the discovery of new therapies. One successful strategy exploits the synthetic lethality between poly(ADP-ribose) polymerase 1/2 proteins and DNA damage response genes, including BRCA1, a factor involved in homologous recombination-mediated DNA repair, and CDK12, a transcriptional kinase known to regulate the expression of DDR genes. CHK1 inhibitors have been shown to enhance the anti-cancer effect of DNA-damaging compounds.
View Article and Find Full Text PDFA 24-step synthesis of (±)-forskolin is presented, which delivered hundred milligram quantities of this complex diterpene in one pass. Transformations key to our approach include: a) a strategic allylic transposition, b) stepwise assembly of a sterically encumbered isoxazole ring, and c) citric acid-modified Upjohn dihydroxylation of a resilient tetrasubstituted olefin. The developed route has exciting potential for the preparation of new forskolin analogues inaccessible by semisynthesis.
View Article and Find Full Text PDFCheckpoint-mediated dependency of tumor cells can be deployed to selectively kill them without substantial toxicity to normal cells. Specifically, loss of CHK1, a serine threonine kinase involved in the surveillance of the G-M checkpoint in the presence of replication stress inflicted by DNA-damaging drugs, has been reported to dramatically influence the viability of tumor cells. CHK1's pivotal role in maintaining genomic stability offers attractive opportunity for increasing the selectivity, effectivity, and reduced toxicity of chemotherapy.
View Article and Find Full Text PDFCarbocyclic C-nucleosides are quite rare. Our route enables flexible preparation of three classes of these nucleoside analogs from common precursors-properly substituted cyclopentanones, which can be prepared racemic (in six steps) or optically pure (in ten steps) from inexpensive norbornadiene. The methodology allows flexible manipulation of individual positions around the cyclopentane ring, namely highly diastereoselective installation of carbo- and heterocyclic substituents at position 1', orthogonal functionalization of position 5', and efficient inversion of stereochemistry at position 2'.
View Article and Find Full Text PDFTreatment options for TP53-mutated lymphoid tumors are very limited. In experimental models, TP53-mutated lymphomas were sensitive to direct inhibition of checkpoint kinase 1 (Chk1), a pivotal regulator of replication. We initially tested the potential of the highly specific Chk1 inhibitor SCH900776 to synergize with nucleoside analogs (NAs) fludarabine, cytarabine and gemcitabine in cell lines derived from B-cell malignancies.
View Article and Find Full Text PDF