Recent developments in pixelated detectors, when combined with aberration correction of probe forming optics have greatly enhanced the field of scanning electron diffraction. Differential phase contrast is now routine and deep learning has been proposed as a method to extract maximum information from diffraction patterns. This work examines the effects of temporal and spatial incoherence on convergent beam electron diffraction patterns and demonstrates that simple center of mass measurements cannot be naively interpreted.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2017
Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies.
View Article and Find Full Text PDFWe present a facile method to grow millimeter-size, hexagon-shaped, monolayer, single-crystal graphene domains on commercial metal foils. After a brief in situ treatment, namely, melting and subsequent resolidification of copper at atmospheric pressure, a smooth surface is obtained, resulting in the low nucleation density necessary for the growth of large-size single-crystal graphene domains. Comparison with other pretreatment methods reveals the importance of copper surface morphology and the critical role of the melting-resolidification pretreatment.
View Article and Find Full Text PDF