We and others have previously shown that the canonical nuclear factor kappa-B (NF-κB) pathway is essential to nasopharyngeal carcinoma (NPC) tumor development and angiogenesis, suggesting that the NF-κB pathway, including its upstream modulators and downstream effectors, are potential therapeutic targets for NPC. The inhibitor of upstream IκB kinase (IKK), PS1145, is a small molecule which can specifically inhibit the IκB phosphorylation and degradation and the subsequent nuclear translocation of NF-κB. The present study aims to determine the anti-tumor activity of PS1145 on NPC.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2019
Background: In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma.
Methods: Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels.
The Wnt signaling pathway is known to serve an important role in the control of cell migration. The present study analyzed the mechanisms underlying the in vitro modulation of the migration of nasopharyngeal carcinoma (NPC) cells by the CREB‑binding protein/catenin antagonist and Wnt modulator ICG‑001. The results revealed that ICG‑001‑mediated inhibition of tumor cell migration involved downregulated mRNA and protein expression of the Wnt target gene cluster of differentiation (CD)44.
View Article and Find Full Text PDFAims: This study aimed at evaluating the potential anti-proliferative effects of the microRNA let-7 family in nasopharyngeal carcinoma (NPC) cells. In addition, the association between let-7 suppression and DNA hypermethylation is examined.
Materials And Methods: Levels of mature let-7 family members (-a, -b, -d, -e, -g, and -i) in normal nasopharyngeal cells (NP69 and NP460) and nasopharyngeal carcinoma cells (HK1 and HONE1) were measured by real-time quantitative PCR.