Publications by authors named "On-Uma Nimittrakoolchai"

Surface enhanced Raman spectroscopy (SERS) has been widely studied and recognized as a powerful label-free technique for trace chemical analysis. However, its drawback in simultaneously identifying several molecular species has greatly limited its real-world applications. In this work, we reported a combination between SERS and independent component analysis (ICA) to detect several trace antibiotics which are commonly used in aquacultures, including malachite green, furazolidone, furaltadone hydrochloride, nitrofurantoin, and nitrofurazone.

View Article and Find Full Text PDF

Background And Aim: Public health and food safety are gaining attention globally. Consumer health can be protected from chemical residues in meat by early detection or screening for antibiotic residues before selling the meat commercially. However, conventional practices are normally applied after slaughtering, which leads to massive business losses.

View Article and Find Full Text PDF

Silica-Based coatings having excellent water- and oil-repellent properties and good weathering stability have been deposited onto glass surface by a simple one-step dip coating technique. To achieve ultra water repellency and super oil repellency, the chemical composition of SiO2 nanoparticle employed as surface roughness enhancer and trichloro(1H,1H,2H,2H-perfluorooctyl)silane employed as surface-energy reducing substance was varied. At the optimum synthesis condition, the coating exhibited very high contact angles of 173.

View Article and Find Full Text PDF

Needle-shaped pillars so-called "Black silicon" (B-Si) were fabricated by etching cleaned silicon wafer with fluorine-based deep reactive ion etching plasma. The B-Si pillar with the pillar size (a) and spacing (b) of 250 nm, and height (h) of 6.47 microm, coated with SiOxFy film had water contact angle (WCA) and ethylene glycol contact angle (ECA) of 159.

View Article and Find Full Text PDF

Superhydrophobic surface can be fabricated by creating a rough surface at very fine scale and modify it with low-surface energy material. To obtain the optimum superhydrophobicity, the surface roughness must be maximized. To avoid the limitation of scaling down the pattern size by using an expensive lithography tools, the surface roughness factor (r) was increased by means of changing an asperity shape so as to increase its overall surface area.

View Article and Find Full Text PDF

The silica-based multilayer films exhibiting both self-cleaning property and antireflection in the visible and near infrared regions have been deposited onto glass substrate by layer-by-layer deposition of PAH/PAA polyelectrolyte bilayers, followed by sequential deposition of PAH/SiO2 nanocomposite layers to create the nanoporous structure in the film, and finally treating with fluorosilane. To obtain the appropriate porosity and surface roughness so as to satisfy both antireflection and self-cleaning properties, the deposition of PAH/SiO2 nanocomposite layers was varied from 2 to 8 layers. Scanning electron microscopy and atomic force microscopy analysis revealed that a highly nanoporous structure was obtained from the more deposition of loosely agglomerated SiO2 nanoparticles which increased with the increased cycle of PAH/SiO2 deposition.

View Article and Find Full Text PDF