Objective: The purpose of this study was to examine the effect of exposure of a low-intensity blast wave on androgen receptor (AR) density in the hippocampus and the potential influence on behavioral and cognitive responses.
Methods: Sprague-Dawley rats were randomly assigned to either a blast exposed group ( = 27) or an unexposed (control) group ( = 10). Animals were treated identically, except that rats within the control group were not exposed to any of the characteristics of the blast wave.
The complex interactions and overlapping symptoms of comorbid post-traumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) induced by an explosive blast wave have become a focus of attention in recent years, making clinical distinction and effective intervention difficult. Because dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is thought to underlie trauma-related (psycho)pathology, we evaluated both the endogenous corticosterone response and the efficacy of exogenous hydrocortisone treatment provided shortly after blast exposure. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast wave produced by exploding a thin copper wire.
View Article and Find Full Text PDFThis study investigated the benefit of β-alanine (BA) supplementation on behavioral and cognitive responses relating to mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) in rats exposed to a low-pressure blast wave. Animals were fed a normal diet with or without (PL) BA supplementation (100 mg kg) for 30-day, prior to being exposed to a low-pressure blast wave. A third group of animals served as a control (CTL).
View Article and Find Full Text PDFThe intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner.
View Article and Find Full Text PDF