Publications by authors named "Omri Drory"

The botulinum neurotoxin serotype A light chain (BoNT/A LC) protease is the catalytic component responsible for the neuroparalysis that is characteristic of the disease state botulism. Three related peptide-like molecules (PLMs) were designed using previous information from co-crystal structures, synthesized, and assayed for in vitro inhibition against BoNT/A LC. Our results indicate these PLMS are competitive inhibitors of the BoNT/A LC protease and their K(i) values are in the nM-range.

View Article and Find Full Text PDF

All higher organisms on Earth receive energy directly or indirectly from oxygenic photosynthesis performed by plants, green algae and cyanobacteria. Photosystem I (PSI) is a supercomplex of a reaction centre and light-harvesting complexes. It generates the most negative redox potential in nature, and thus largely determines the global amount of enthalpy in living systems.

View Article and Find Full Text PDF

Bioenergetics and physiology of primary pumps have been revitalized by new insights into the mechanism of energizing biomembranes. Structural information is becoming available, and the three-dimensional structure of F-ATPase is being resolved. The growing understanding of the fundamental mechanism of energy coupling may revolutionize our view of biological processes.

View Article and Find Full Text PDF

V-ATPase is a multi-subunit membrane protein complex, it translocates protons across biological membranes, generating electrical and pH gradients which are used for varieties of cellular processes. V-ATPase is composed of two distinct sub-complexes: a membrane bound V0 sub-complex, composed of 6 different subunits, which is responsible for proton transport and a soluble cytosolic facing V1 sub-complex, composed of 8 different subunits which hydrolyse ATP. The two sub-complexes are held together via a flexible stator.

View Article and Find Full Text PDF

Vacuolar H(+)-ATPase (V-ATPase) has a crucial role in the vacuolar system of eukaryotic cells. It provides most of the energy required for transport systems that utilize the proton-motive force that is generated by ATP hydrolysis. Some, but not all, of the V-ATPase subunits are homologous to those of F-ATPase and the nonhomologous subunits determine the unique features of V-ATPase.

View Article and Find Full Text PDF

The expression, crystallization and phasing of subunit C (Vma5p) of the yeast (Saccharomyces cerevisiae) vacuolar proton-translocating ATPase (V-ATPase) is described. The expressed protein consists of 412 residues: 392 from the reading frame of Vma5p and 20 N-terminal residues originating from the plasmid. Diffraction-quality crystals were obtained using the hanging-drop and sitting-drop vapour-diffusion methods assisted by streak-seeding, with PEG 3350 as precipitant.

View Article and Find Full Text PDF