Publications by authors named "Omri Barlev"

Resonance domain diffractive optical elements for combining RGB laser beams into a single collimated beam were designed, fabricated, and experimentally investigated. The input RGB beams were angular separated up to tens of degrees and set in a nearly Bragg arrangement for high diffraction efficiency. A single resonance domain diffractive lens delivered beam combining and collimation functions with reasonable residue divergence.

View Article and Find Full Text PDF

A set of diffractive optical elements for multiple-stripe structured illumination was designed, fabricated and characterized. Each of these elements with a single layer of binary surface relief combines functions of a diffractive lens, Gaussian-to-tophat beam shaper, and Dammann beam splitter. The optical investigations of laser light patterns at 20° fanout angle reveal up to 88% diffraction efficiency, high contrast, and nearly diffraction limited resolution.

View Article and Find Full Text PDF

High-efficiency resonance-domain diffractive microlens arrays with high numerical apertures and 100% fill factor were designed, fabricated, and characterized. Fabricated arrays of eight off-axis microlenses with pitch 127 μm and numerical aperture 0.2 demonstrated diffraction-limited collimation of fiber light at 632.

View Article and Find Full Text PDF

We investigated coherent imaging with a binary off-axis resonance domain diffractive lens using three lasers in visible wavelengths. The relations between the dispersion of this lens, shape of its point spread function, and spectral properties of these lasers were analyzed theoretically and experimentally. In particular, we measured the point spread function, imaging contrast, and diffraction efficiency.

View Article and Find Full Text PDF

Inherent strong lateral and longitudinal chromatic dispersion of a transmission resonance domain off-axis diffractive lens were studied theoretically and experimentally. It is shown that a 4 mm diameter and 0.14 NA diffractive lens provides both focusing and dispersion with a spectral resolution of up to 0.

View Article and Find Full Text PDF

Early expectations for a role of diffractive lenses were dramatically lessened by their high order overlapping foci, low optical powers, and competing advances in refractive micro-optics. By bringing the Bragg properties of volume holograms to diffractive lenses we got rid of ghost diffractive orders and the critical trade-off between diffraction efficiency, number of phase levels, and spatial feature-size. Binary off-axis resonance domain diffractive lens with high numerical aperture of 0.

View Article and Find Full Text PDF

Surface-relief resonance-domain diffraction gratings with deep and dense grooves provide considerable changes in light propagation direction, wavefront curvature, and nearly 100% Bragg diffraction efficiency usually attributed only to volume optical holograms. In this paper, we present design, computer simulation, fabrication, and experimental results of binary resonance-domain diffraction gratings in the visible spectral region. Performance of imperfectly fabricated diffraction groove profiles was optimized by controlling the DC and the depth of the grooves.

View Article and Find Full Text PDF

A method to design lasers that emit an arbitrary beam profile is studied. In these lasers, output-coupling is performed by a diffraction grating that imposes a phase and amplitude distribution onto the diffracted light. A solid-state laser emitting beams with a two-dimensional Airy intensity profile is demonstrated both theoretically and experimentally.

View Article and Find Full Text PDF