Hemorrhagic shock and resuscitation (HSR) enhances the risk of acute lung injury (ALI). This study investigated the protective effect of carbamazepine (CBZ) on HSR-induced ALI in rats. Male Sprague-Dawley rats were allocated into five distinct groups through randomization: control (SHAM), saline + HSR (HSR), CBZ + HSR (CBZ/HSR), dimethyl sulfoxide (DMSO) + HSR (DMSO/HSR), and CBZ + chloroquine (CQ) + HSR (CBZ/CQ/HSR).
View Article and Find Full Text PDFTwist-coupled elastic deformations are ubiquitous and in the limelight of interest for next-generation self-shaping materials. Here, we describe how twist dynamics under fixed anchoring lead to bend deformation and defect dynamics in a field-unwound chiral liquid crystal material. We use the Q-tensor dynamics under the Landau-de Gennes formalism in a finite-element mesh to explore the texture pathways from the unwound (homeotropic) to the helical planar structure.
View Article and Find Full Text PDFThe heme component of myoglobin plays a crucial role in the pathogenesis of rhabdomyolysis-associated acute kidney injury (RM-AKI). Heme oxiganenase-1 (HO-1) is the rate-limiting enzyme of heme catabolism, and its metabolites, iron, biliverdin, and carbon monoxide, have antioxidant properties. Tin chloride (SnCl2) is a kidney specific HO-1 inducer.
View Article and Find Full Text PDFHemorrhagic shock and resuscitation (HSR) induces a pulmonary inflammatory response and frequently causes acute lung injury. Carbon monoxide-releasing molecule-3 (CORM-3) has been reported to liberate and deliver CO under physiological conditions, which exerts organ-protective effects during systemic insults. The present study aimed to determine whether the administration of CORM-3 following HSR exerts a therapeutic effect against HSR-induced lung injury without any detrimental effects on oxygenation and hemodynamics.
View Article and Find Full Text PDFSterol-regulatory element-binding proteins (SREBPs) are key transcription factors regulating cholesterol and fatty acid biosynthesis. SREBP activity is tightly regulated to maintain lipid homeostasis, and is modulated upon extracellular stimuli such as growth factors. While the homeostatic SREBP regulation is well studied, stimuli-dependent regulatory mechanisms are still elusive.
View Article and Find Full Text PDFScardovia inopinata JCM 12537(T) was isolated from human dental caries. Here, we report the complete genome sequence of this organism. This paper is the first report to demonstrate the fully sequenced and completely annotated genome of an S.
View Article and Find Full Text PDFHepatic oxidative stress is a major contributor to the pathogenesis of several acute liver diseases. Diagnostic markers of hepatic oxidative stress may facilitate early detection and intervention. Bach1 is an oxidative stress-responsive transcription factor that represses heme oxygenase 1 (HO-1), the rate-limiting enzyme in the catabolism of heme, a potent pro-oxidant.
View Article and Find Full Text PDFTNF activates three distinct intracellular signaling cascades leading to cell survival, caspase-8-mediated apoptosis, or receptor interacting protein kinase 3 (RIPK3)-dependent necrosis, also called necroptosis. Depending on the cellular context, one of these pathways is activated upon TNF challenge. When caspase-8 is activated, it drives the apoptosis cascade and blocks RIPK3-dependent necrosis.
View Article and Find Full Text PDFHemorrhagic shock and resuscitation induces pulmonary inflammation that leads to acute lung injury. Biliverdin, a metabolite of heme catabolism, has been shown to have potent cytoprotective, anti-inflammatory, and anti-oxidant effects. This study aimed to examine the effects of intravenous biliverdin administration on lung injury induced by hemorrhagic shock and resuscitation in rats.
View Article and Find Full Text PDFEven after successful resuscitation, hemorrhagic shock frequently causes pulmonary inflammation that induces acute lung injury (ALI). We previously demonstrated that when CO is inhaled at a low concentration both prior to and following hemorrhagic shock and resuscitation (HSR) it ameliorates HSR-induced ALI in rats due to its anti-inflammatory effects. In the present study, we administered CO to the same model of ALI only after resuscitation and examined whether it exerted a therapeutic effect without adverse events on HSR-induced ALI, since treatment of animals with CO prior to HSR did not prevent lung injury.
View Article and Find Full Text PDFDysregulation in cellular redox systems results in accumulation of reactive oxygen species (ROS), which are causally associated with a number of disease conditions. Transforming growth factor β-activated kinase 1 (TAK1) is a signaling intermediate of innate immune signaling pathways and is critically involved in the redox regulation in vivo. Ablation of TAK1 causes accumulation of ROS, resulting in epithelial cell death and inflammation.
View Article and Find Full Text PDFThe progression and interrelationship of mediators that are released, activated or suppressed after major surgery appear to play an important role in responses to surgical stress. Heat shock protein 70 (HSP70) is stress-induced and acts like a cytokine to modulate pro-inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), by stimulating toll-like receptor 4 (TLR4) signaling. We hypothesized that this effect would occur after major surgery, such as esophagectomy.
View Article and Find Full Text PDFβ-Catenin is constantly degraded through the ubiquitin-proteasomal pathway. In this study, we report that a different type of β-catenin degradation is causally involved in epidermal cell death. We observed that reactive oxygen species (ROS) caused β-catenin degradation in the epidermal cells through a caspase-dependent mechanism, which results in disruption of cell adhesion.
View Article and Find Full Text PDFTAK1 kinase activates multiple transcription factors and regulates the level of reactive oxygen species (ROS). We have previously reported that ablation of TAK1 in keratinocytes causes hypersensitivity to ROS-induced cell apoptosis. It is known that some tumor cells produce ROS at higher levels compared with normal cells.
View Article and Find Full Text PDFThe intestinal epithelium is constantly exposed to inducers of reactive oxygen species (ROS), such as commensal microorganisms. Levels of ROS are normally maintained at nontoxic levels, but dysregulation of ROS is involved in intestinal inflammatory diseases. In this article, we report that TGF-β-activated kinase 1 (TAK1) is a key regulator of ROS in the intestinal epithelium.
View Article and Find Full Text PDFBackground: Hemorrhagic shock and resuscitation (HSR) induces pulmonary inflammation that leads to acute lung injury. Carbon monoxide (CO), a by-product of heme catalysis, was shown to have potent cytoprotective and anti-inflammatory effects. The aim of this study was to examine the effects of CO inhalation at low concentration on lung injury induced by HSR in rats.
View Article and Find Full Text PDFHemorrhagic shock followed by resuscitation (HSR) causes oxidative stress, which results in multiple organ damage. The kidney is one of the target organs of HSR-mediated oxidative tissue injury. Heme oxygenase (HO)-1, the rate-limiting enzyme in heme catabolism, is induced by oxidative stress; it protects against oxidative tissue injuries.
View Article and Find Full Text PDFTNF-related apoptosis-inducing ligand (TRAIL) is a potent inducer of cell death in several cancer cells, but many cells are resistant to TRAIL. The mechanism that determines sensitivity to TRAIL-killing is still elusive. Here we report that deletion of TAK1 kinase greatly increased activation of caspase-3 and cell death after TRAIL stimulation in keratinocytes, fibroblasts and cancer cells.
View Article and Find Full Text PDFThe intestine is a major target organ in hemorrhagic shock (HS)-induced tissue injury. Hypoxia-inducible factor (HIF)-1α is the primary transcription factor responsible for regulating cellular response to changes in oxygen tension. Since HS is an acute hypoxic insult, the present study examined changes in the gene expression of HIF-1α in various regions of the intestine, as well as the distribution of HIF-1α protein in the intestinal cells of a rat model of HS.
View Article and Find Full Text PDFBackground: We have previously reported that intestinal epithelium-specific TAK1 deleted mice exhibit severe inflammation and mortality at postnatal day 1 due to TNF-induced epithelial cell death. Although deletion of TNF receptor 1 (TNFR1) can largely rescue those neonatal phenotypes, mice harboring double deletion of TNF receptor 1 (TNFR1) and intestinal epithelium-specific deletion of TAK1 (TNFR1KO/TAK1(IE)KO) still occasionally show increased inflammation. This indicates that TAK1 is important for TNF-independent regulation of intestinal integrity.
View Article and Find Full Text PDFTreatment of rats with monocrotaline (MCT), a pyrrolizidine alkaloid plant toxin, is known to cause pulmonary hypertension (PH), and it has been used as a useful experimental model of PH. Recent findings suggested that pulmonary inflammation may play a significant role in the pathogenesis of MCT-induced PH. We also demonstrated that, following MCT administration to rats, there was a significant and sustained increase in the pulmonary expression of heme oxygenase-1 (HO-1), which is known to be induced by various oxidative stresses, including inflammation and free heme, and is thought to be essential in the protection against oxidative tissue injuries.
View Article and Find Full Text PDF