Publications by authors named "Omnia Ismaiel"

Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.

View Article and Find Full Text PDF

The U.S. Food and Drug Administration (FDA) Division of Applied Regulatory Science (DARS) moves new science into the drug review process and addresses emergent regulatory and public health questions for the Agency.

View Article and Find Full Text PDF

Objective: Employ the hollow fiber infection model (HFIM) to study sequential antibiotic administration (ampicillin, ciprofloxacin and fosfomycin) using human pharmacokinetic profiles to measure changes in the rate of antibiotic resistance development and compare this to simultaneous combination therapy with the same antibiotic combinations.

Methods: Escherichia coli CFT073, a clinical uropathogenic strain, was exposed individually to clinically relevant pharmacokinetic concentrations of ampicillin on day 1, ciprofloxacin on day 2 and fosfomycin on day 3. This sequence was continued for 10 days in the HFIM.

View Article and Find Full Text PDF

ICH S7B recommends screening for hERG channel block using patch clamp recordings to assess a drug's proarrhythmic risk. Block of the hERG channel has been associated with clinical QT prolongation as well as the rare, but potentially fatal ventricular tachyarrhythmia Torsade de Pointes (TdP). During recording, drug concentrations perfused to the cells can deviate from nominal concentrations due to molecule-specific properties (such as non-specific binding), thereby introducing error when assessing drug potency.

View Article and Find Full Text PDF

AZD7442 (tixagevimab [AZD8895]/cilgavimab [AZD1061]) is a monoclonal antibody (mAb) combination in development for the prevention and treatment of coronavirus disease 2019. Traditionally, bioanalysis of mAbs is performed using ligand binding assays (LBAs), which offer sensitivity, robustness, and ease of implementation. However, LBAs frequently require generation of critical reagents that typically take several months.

View Article and Find Full Text PDF

Importance: Opioids can cause severe respiratory depression by suppressing feedback mechanisms that increase ventilation in response to hypercapnia. Following the addition of boxed warnings to benzodiazepine and opioid products about increased respiratory depression risk with simultaneous use, the US Food and Drug Administration evaluated whether other drugs that might be used in place of benzodiazepines may cause similar effects.

Objective: To study whether combining paroxetine or quetiapine with oxycodone, compared with oxycodone alone, decreases the ventilatory response to hypercapnia.

View Article and Find Full Text PDF

According to the ICH S7B guideline, drug candidates are screened for hERG block prior to first-in-human testing to predict the likelihood of delayed repolarization associated with a rare, but life-threatening, ventricular tachyarrhythmia. The new ICH E14 Q&As guideline allows hERG results to be used in later clinical development for decision-making (Q&As 5.1 and 6.

View Article and Find Full Text PDF

With the ever-growing abundance of complex therapeutic proteins reaching clinical trials and post-marketing, it is vital to develop highly accurate and robust bioanalytical methods for their quantitative analysis in matrices, to support clinical trial data as well as therapeutic drug monitoring. In bioanalysis, proteins have traditionally been evaluated using ligand binding assays (LBAs). However, in recent years, bottom-up LC-MS/MS methods have begun to gain recognition as an alternative to LBAs in situations where either there is a desire to reduce lengthy development times, or where selectivity issues prevent the immunoassay from reaching the desired outcome.

View Article and Find Full Text PDF

Ranibizumab is an FDA-approved drug used to treat wet age-related macular degeneration (AMD), diabetic retinopathy, macular edema, and myopic choroidal neovascularization. Bevacizumab is another drug often used off-label to treat wet AMD. In order to reduce unwanted angiogenesis, ranibizumab and bevacizumab target circulating VEGF-A in the eye.

View Article and Find Full Text PDF

As biologic based drugs become an increasingly important sector of the pharmaceutical industry, accurate and precision techniques for bioanalysis are required to support clinical trials and beyond. Ranibizumab, a fab therapeutic, is an FDA approved drug to treat wet age-related macular degeneration (AMD), as well as other eye related diseases. Ranibizumab's mAb counterpart, bevacizumab, is often also used off-label to treat wet AMD.

View Article and Find Full Text PDF

Complex biotherapeutic modalities, such as antibody-drug conjugates (ADC), present significant challenges for the comprehensive bioanalytical characterization of their pharmacokinetics (PK) and catabolism in both preclinical and clinical settings. Thus, the bioanalytical strategy for ADCs must be designed to address the specific structural elements of the protein scaffold, linker, and warhead. A typical bioanalytical strategy for ADCs involves quantification of the Total ADC, Total IgG, and Free Warhead concentrations.

View Article and Find Full Text PDF

The inability to achieve adequate intracellular antiretroviral concentrations may contribute to HIV persistence within the brain and to neurocognitive deficits in opioid abusers. To investigate, intracellular antiretroviral concentrations were measured in primary human astrocytes, microglia, pericytes, and brain microvascular endothelial cells (BMECs), and in an immortalized brain endothelial cell line (hCMEC/D3). HIV-1 Tat and morphine effects on intracellular antiretroviral concentrations also were evaluated.

View Article and Find Full Text PDF

Combination antiretroviral therapy (cART) regimens are recommended for HIV patients to better achieve and maintain plasma viral suppression. Despite adequate plasma viral suppression, HIV persists inside the brain, which is, in part thought to result from poor brain penetration of antiretroviral drugs. In this study, a simple and ultra-sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of tenofovir, emtricitabine, and dolutegravir in cell lysates of an immortalized human brain microvascular endothelial cell line (hCMEC/D3) was developed and validated.

View Article and Find Full Text PDF

A simple RP-HPLC-PDA method for determination of atenolol (ATN) and trimetazidine (TMZ) in human urine and tablets has been developed. Analytes were separated on a Caltrex BI column (125× 4.0 mm, 5 m) with 25mM potassium dihydrogen phosphate pH 3.

View Article and Find Full Text PDF

Online 2-dimensional chromatographic approaches for eliminating matrix effects and optimizing bioanalysis of peptides using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were studied. Three therapeutic peptides (octreotide, desmopressin, and vasopressin) were selected as model analytes. Human plasma was precipitated with acetonitrile; peptides were analyzed on C(8), C(18), Phenyl and HILIC ACQUITY UPLC columns.

View Article and Find Full Text PDF

Dried blood spot (DBS) sampling coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a rapidly developing approach in the field of biopharmaceutical analysis. DBS sampling enables analysis of small sample volumes with high sensitivity and selectivity while providing a convenient easy to store and ship format. Lipid components that may be extracted during biological sample processing may result in matrix ionization effects and can significantly affect the precision and accuracy of the results.

View Article and Find Full Text PDF

Omnia Ismaiel began working with PPD in 2008 as a postdoctoral fellow and became a full-time research scientist in early 2011. She has extensively studied matrix effects in LC-ESI-MS/MS bioanalysis, evaluating a broad spectrum of matrix lipid compound classes and their relative ion suppression interference effects. Over the past 2 years, Omnia's research has focused on solid-phase microextraction and 2D UPLC separation techniques for analyzing peptides by LC-MS/MS.

View Article and Find Full Text PDF

A selective UHPLC-MS/MS method for determination of the therapeutic peptide octreotide in human plasma was developed and validated. This assay used a UHPLC C(18) column with 1.7 μm particle size for efficient separation and an ion-exchange SPE for selective extraction.

View Article and Find Full Text PDF

Matrix effects caused by compounds endogenous to the biological sample are a primary challenge in quantitative LC/MS/MS bioanalysis. Many approaches have been developed to minimize matrix effects such as optimization of sample extraction procedures and use of isotopically labeled internal standards. Unexpected matrix components may still remain undetected, however, because of the selective mass transitions monitored during MS/MS analysis.

View Article and Find Full Text PDF

Biological matrix effects are a source of significant errors in both electrospray (ESI) and atmospheric pressure chemical ionization (APCI) LC/MS. Glycerophosphocholines (GPChos) and 2-lyso-glycerophosphocholines (2-lyso GPChos) are known to fragment to form ions at m/z 184 and m/z 104, respectively. Phospholipids were used as markers to evaluate matrix effects resulting in both ion suppression and enhancement using ESI and APCI modes in the determination of chlorpheniramine in human plasma.

View Article and Find Full Text PDF

A simple, sensitive and rapid liquid-liquid extraction method for the analysis of nicotinic acid (niacin) and its labeled internal standard nicotinic acid-d4 (niacin-d4) in human plasma was developed and validated. The analyte and its internal standard were isolated from acidified plasma using a single liquid-liquid extraction procedure with methyl-t-butyl ether. The extracted samples were analyzed by liquid chromatography-tandem mass spectrometry in positive electrospray ionization mode with multiple reaction monitoring.

View Article and Find Full Text PDF

Matrix effects resulting in ion suppression or enhancement have been shown to be a source of variability and inaccuracy in bioanalytical mass spectrometry. Glycerophosphocholines may cause significant matrix ionization effects during quantitative LC/MS/MS analysis and are known to fragment to form characteristic ions (m/z 184) in electrospray mass spectrometry. This ion was used to monitor ion suppression effects in the determination of hydrocodone and pseudoephedrine in human plasma as a means to track and avoid these effects.

View Article and Find Full Text PDF