Publications by authors named "Omnia I Ali"

A novel MnO@EDTA-Ag nanocoral reef was constructed via a simplified redox reaction followed by EDTA and Ag nanoparticles impregnation to capture hazardous copper (II) from wastewater. A comprehensive characterization of the synthesized materials was conducted. The morphology of MnO@EDTA-Ag in the form of a nanocoral reef was constructed of two-dimensional nanoplatelets and nanorod-like nanostructures.

View Article and Find Full Text PDF

A facile modification of a strontium-based MOF using oxalic acid was carried out to prepare MTSr-OX MOF, which was used as a potential substance for eliminating Eu radioisotopes. Various analytical techniques were used to characterize MTSr-OX-MOF. The prepared MOF had a rod-like structure with a BET surface area of 101.

View Article and Find Full Text PDF

The nuclear industry is rapidly developing and the effective management of nuclear waste and monitoring the nuclear fuel cycle are crucial. The presence of various radionuclides such as uranium (U), europium (Eu), technetium (Tc), iodine (I), thorium (Th), cesium (Cs), and strontium (Sr) in the environment is a major concern, and the development of materials with high adsorption capacity and selectivity is essential for their effective removal. Metal-organic frameworks (MOFs) have recently emerged as promising materials for removing radioactive elements from water resources due to their unique properties such as tunable pore size, high surface area, and chemical structure.

View Article and Find Full Text PDF

Herein, eco-friendly mesoporous magnetic activated carbon-based agro-waste nanosorbents incorporating antimicrobial silver nanoparticles (Mag@AC1-Ag and Mag@AC1-Ag) have been prepared. Various techniques (XRD, SEM/EDX, TEM, FTIR, and BET analysis) were employed to characterize the prepared nanosorbents before being utilized as novel nanosorbents to remove Pb and Cd ions. Mag@AC1-Ag and Mag@AC1-Ag exhibited rapid and excellent uptake of Pb and Cd.

View Article and Find Full Text PDF

Removal of hazardous radioactive materials such as Eu from active waste using the batch approach has attracted attention nowadays. In this work, a novel melamine-terephthalic strontium metal-organic framework (MTSr-MOF) was prepared a hydrothermal method. The MTSr-MOF was characterized by various analytical techniques such as FT-IR, H/C-NMR, mass spectroscopy, XPS, XRD, TGA, BET, FE-SEM/EDX, TEM, and UV.

View Article and Find Full Text PDF

Tailoring a material that has a synergistic role as an adsorbent and a photocatalyst for environmental application is an attractive field for research. This article presents a study of facile synthesis of NiO and Ni/NiO with a synergistic role as super adsorbents in the lake of light and photocatalysts under light irradiation. Nano flower-like mesoporous NiO and Ni/NiO were synthesized by the co-precipitation method.

View Article and Find Full Text PDF

Hepatitis-C virus ribonucleic acid (HCV-RNA) recognition and quantification based on real-time polymerase chain reaction (RT-PCR) is key to infection control, management, and response to treatment due to its specificity, sensitivity, and quantification capabilities. However, the high cost, time requirements, and need for sophisticated laboratory infrastructure have limited the use of this method in rapid screening, blood banks, and point-of-care testing (POCT). In this work, a novel label-free electrochemical biosensor constructed using a polyaniline@nickel metal-organic framework (Ni-MOF) nanocomposite was developed for direct detection of unamplified HCV nucleic acid.

View Article and Find Full Text PDF

Development of ultra-sensitive, high specific and cost-effective nucleic acids (NAs) biosensors is critical for early diagnosis of cancer, genetic diseases and follows up response to treatment. Metal-organic frameworks (MOFs) as sensing materials underwent significant development in recent years due to their unique merits, such as structural diversity, tunable pore scale, large surface area, remarkable adsorption affinities, and good thermal stability. MOFs have shown potential contribution in nucleic acids biosensors research.

View Article and Find Full Text PDF

Three simple, precise, accurate and validated derivative spectrophotometric methods have been developed for the simultaneous determination of levocetirizine dihydrochloride (LCD) and ambroxol hydrochloride (ABH) in bulk powder and in pharmaceutical formulations. The first method is a first derivative spectrophotometric method ((1)D) using a zero-crossing technique of measurement at 210.4 nm for LCD and at 220.

View Article and Find Full Text PDF