Neurodegenerative disorders refer to a group of diseases commonly associated with abnormal protein accumulation and aggregation in the central nervous system. However, the exact role of protein aggregation in the pathophysiology of these disorders remains unclear. This gap in knowledge is due to the lack of experimental models that allow for the spatiotemporal control of protein aggregation, and the investigation of early dynamic events associated with inclusion formation.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
August 2021
The delivery of hydrophobic therapeutic agents to tumors is a challenge in the treatment of cancers. Here, we review recent advances in coiled-coil protein origami and discuss a proposed programmable protein origami structure, switchable by a protein kinase A/phosphatase switch, as an example of functionalization for designing future protein nanorobots.
View Article and Find Full Text PDFRecent findings showed that preformed fibrils (PFFs) of misfolded proteins, including α-synuclein (α-syn) and amyloid-β (Aβ), activate EGFR in cell cultures and animal models of amyloid propagation. Comparing these supramolecular structures to normal EGFR ligands such as EGF and HB-EGF suggests that these PFFs might trigger the formation of high order clustering of EGFR that stimulates the aggregation of EGFR tyrosine kinase domain (EGFR-TKD) which is known to form fibrils. Subsequently, self-assembled fibril of EGFR-TKDs itself can serve as a seed to induce aggregation of monomeric forms of misfolded proteins in cytoplasm or endosomes.
View Article and Find Full Text PDFAggregation and deposition of α-synuclein (α-syn) in Lewy bodies within dopamine neurons of substantia nigra (SN) is the pathological hallmark of Parkinson's disease (PD). These toxic α-syn aggregates are believed to propagate from neuron-to-neuron and spread the α-syn pathology throughout the brain beyond dopamine neurons in a prion-like manner. Targeting propagation of such α-syn aggregates is of high interest but requires identifying pathways involving in this process.
View Article and Find Full Text PDFPostinfection complications of coronavirus disease 2019 (COVID-19) are still unknown, and one of the long-term concerns in infected people are brain pathologies. The question is that severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection may be an environmental factor in accelerating the sporadic neurodegeneration in the infected population. In this regard, induction of protein aggregation in the brain by SARS-CoV-2 intact structure or a peptide derived from spike protein subunits needs to be considered in futures studies.
View Article and Find Full Text PDFHeparan sulfate proteoglycans (HSPGs) are cell surface receptors that are involved in the cellular uptake of pathologic amyloid proteins and viruses, including the novel coronavirus; severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Heparin and heparan sulfate antagonize the binding of these pathogens to HSPGs and stop their cellular internalization, but the anticoagulant effect of these agents has been limiting their use in the treatment of viral infections. Heparin-binding peptides (HBPs) are suitable nonanticoagulant agents that are capable of antagonizing binding of heparin-binding pathogens to HSPGs.
View Article and Find Full Text PDFThe pathological hallmark of Parkinson's disease (PD) is Lewy bodies that form within the brain from aggregated forms of α-synuclein (α-syn). These toxic α-syn aggregates are transferred from cell to cell by release of fibrils from dying neurons into the extracellular environment, followed by their subsequent uptake by neighboring cells. This process leads to spreading of the pathology throughout the brain in a prion-like manner.
View Article and Find Full Text PDFSeveral reports have been published recently demonstrating a beneficial effect of epidermal growth factor receptor (EGFR) inhibitors in improving pathologic and behavioral conditions in neurodegenerative diseases (NDDs) such as Alzheimer's disease and Amyotrophic Lateral Sclerosis (ALS) as well as the brain and spinal cord injuries (SCI). Despite successful therapeutic effects of EGFR inhibition in these pathologic conditions, there is still no report of proof-of-concept studies in well-characterized animal models using recently developed blood-brain barrier (BBB)-penetrating EGFR inhibitors, which is due to previous conflicting reports concerning the level of EGFR or activated EGFR in normal and pathologic conditions that caused target engagement to be a concern in any future EGFR inhibition therapy. In this review, the level of EGFR expression and activation in the developing central nervous system (CNS) compared with the adult CNS will be explained as well as how neuronal injury or pathologic conditions, especially inflammation and amyloid fibrils, induce reactive astrocytes leading to an increase in the expression and activation of EGFR and, finally, neurodegeneration.
View Article and Find Full Text PDFQuinolinic acid (QA), a downstream neurometabolite in the kynurenine pathway, the biosynthetic pathway of tryptophan, is associated with neurodegenerative diseases pathology. Mutations in genes encoding kynurenine pathway enzymes, which control the level of QA production, are linked with elevated risk of developing Parkinson's disease. Recent findings have revealed the accumulation and deposition of QA in post-mortem samples, as well as in cellular models of Alzheimer's disease and related disorders.
View Article and Find Full Text PDFThe accumulation of various metabolites appears to be associated with diverse human diseases. However, the aetiological link between metabolic alteration and the observed diseases is still elusive. This includes the correlation between the abnormally high levels of homocysteine and quinolinic acid in Alzheimer's disease, as well as the accumulation of oncometabolites in malignant processes.
View Article and Find Full Text PDFA major feature of Parkinson's disease is the formation of Lewy bodies in dopaminergic neurons which consist of misfolded α-synuclein. The binding of natural products to α-synuclein was evaluated by nanopore analysis and caffeine, curcumin, and nicotine all caused large conformational changes which may be related to their known neuroprotective effect in Parkinson's disease. The binding of the stereoisomers of nicotine were also studied by ITC, CD and NMR.
View Article and Find Full Text PDFα-Synuclein (AS) is an intrinsically disordered protein that can misfold and aggregate to form Lewy bodies in dopaminergic neurons, a classic hallmark of Parkinson's disease. The binding of Cu(II) and dopamine to AS was evaluated by nanopore analysis with α-hemolysin. In the absence of Cu(II), wild-type AS (1 μM) readily translocated through the pore with a blockade current of--85 pA, but mostly bumping events were observed in the presence of 25 μM Cu(II).
View Article and Find Full Text PDFα-Synuclein is an intrinsically disordered protein of 140 amino acids which is abundant in dopaminergic neurons. Misfolding and aggregation of α-synuclein leads to the formation of Lewy bodies inside the neurons which is the hallmark of Parkinson's disease and related dementias. Here we show by nanopore analysis that the recreational drug, methamphetamine, binds to the N-terminus of α-synuclein and causes a conformational change which cannot be detected by circular dichroism spectroscopy.
View Article and Find Full Text PDFNanopore analysis is an emerging technique that enables the investigation of the conformation of a single peptide or protein molecule. Briefly, a pore is inserted into a membrane under voltage clamp conditions. When a molecule interacts with the pore there is a change in the current, I, for a time, T.
View Article and Find Full Text PDF