Publications by authors named "Omid Motabar"

Background: Tay-Sachs disease (TSD) is a rare neurodegenerative disorder caused by autosomal recessive mutations in the HEXA gene on chromosome 15 that encodes β-hexosaminidase. Deficiency in HEXA results in accumulation of GM2 ganglioside, a glycosphingolipid, in lysosomes. Currently, there is no effective treatment for TSD.

View Article and Find Full Text PDF

Although a group of FDA-approved drugs were previously identified with activity against Ebola virus (EBOV), most of them are not clinically useful because their human blood concentrations are not high enough to inhibit EBOV infection. We screened 795 unique three-drug combinations in an EBOV entry assay. Two sets of three-drug combinations, toremifene-mefloquine-posaconazole and toremifene-clarithromycin-posaconazole, were identified that effectively blocked EBOV entry and were further validated for inhibition of live EBOV infection.

View Article and Find Full Text PDF

Lysosomal storage diseases (LSDs) are a group of rare diseases in which the function of the lysosome is disrupted by the accumulation of macromolecules. The complexity underlying the pathogenesis of LSDs and the small, often pediatric, population of patients make the development of therapies for these diseases challenging. Current treatments are only available for a small subset of LSDs and have not been effective at treating neurological symptoms.

View Article and Find Full Text PDF

Pompe disease is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA). Many disease-causing mutated GAA retain enzymatic activity but are not translocated from endoplasmic reticulum (ER) to lysosomes. Enzyme replacement therapy (ERT) is the only treatment for Pompe disease but remains expensive, inconvenient, and does not reverse all disease manifestations.

View Article and Find Full Text PDF

A major challenge in the field of Gaucher disease has been the development of new therapeutic strategies including molecular chaperones. All previously described chaperones of glucocerebrosidase are enzyme inhibitors, which complicates their clinical development because their chaperone activity must be balanced against the functional inhibition of the enzyme. Using a novel high throughput screening methodology, we identified a chemical series that does not inhibit the enzyme but can still facilitate its translocation to the lysosome as measured by immunostaining of glucocerebrosidase in patient fibroblasts.

View Article and Find Full Text PDF

Small molecule chaperones are a promising therapeutic approach for the Lysosomal Storage Disorders (LSDs). Here, we report the discovery of a new series of non-iminosugar glucocerebrosidase inhibitors with chaperone capacity, and describe their structure activity relationship (SAR), selectivity, cell activity phamacokinetics.

View Article and Find Full Text PDF

Gaucher disease (GD), the most common lysosomal storage disorder, results from the inherited deficiency of the lysosomal enzyme glucocerebrosidase (GCase). Previously, wildtype GCase was used for high throughput screening (HTS) of large collections of compounds to identify small molecule chaperones that could be developed as new therapies for GD. However, the compounds identified from HTS usually showed reduced potency later in confirmatory cell-based assays.

View Article and Find Full Text PDF

Glucocerebrosidase is a lysosomal enzyme that catalyzes the hydrolysis of glucosylceramide to form ceramide and glucose. A deficiency of lysosomal glucocerebrosidase due to genetic mutations results in Gaucher disease, in which glucosylceramide accumulates in the lysosomes of certain cell types. Although enzyme replacement therapy is currently available for the treatment of type 1 Gaucher disease, the neuronopathic forms of Gaucher disease are still not treatable.

View Article and Find Full Text PDF

Fabry disease is a rare X-linked lysosomal storage disorder caused by a deficiency in α-galactosidase A (GLA), which catalyzes the hydrolysis of terminal α-galactosyl groups from glycosphingolipids, such as globotriaosylceramide (Gb3). Many of the mutations in the GLA gene are missense alterations that cause misfolding, decreased stability, and/or mistrafficking of this protein. Small molecule compounds that correct the misfolding and mistrafficking, or activate the mutant enzyme, may be useful in the treatment of Fabry disease.

View Article and Find Full Text PDF

Gaucher disease is a lysosomal storage disorder (LSD) caused by deficiency in the enzyme glucocerebrosidase (GC). Small molecule chaperones of protein folding and translocation have been proposed as a promising therapeutic approach to this LSD. Most small molecule chaperones described in the literature contain an iminosugar scaffold.

View Article and Find Full Text PDF

Fabry disease is a rare inherited lysosomal storage disorder caused by a partial or complete deficiency of α-galactosidase A (GLA), resulting in the storage of excess cellular glycosphingolipids. Enzyme replacement therapy is available for the treatment of Fabry disease, but it is a costly, intravenous treatment. Alternative therapeutic approaches, including small molecule chaperone therapy, are currently being explored.

View Article and Find Full Text PDF

Pompe disease is a lysosomal storage disease (LSD) caused by a deficiency in the lysosomal enzyme acid alpha-glucosidase. In several LSDs, enzyme inhibitors have been used as small molecule chaperones to facilitate and increase the translocation of mutant protein from the endoplasmic reticulum to the lysosome. Enzyme activators with chaperone activity would be even more desirable as they would not inhibit the enzyme after translocation and might potentiate the activity of the enzyme that is successfully translocated.

View Article and Find Full Text PDF

Alpha-galactosidase A hydrolyzes the terminal alpha-galactosyl moieties from glycolipids and glycoproteins in lysosomes. Mutations in alpha-galactosidase cause lysosomal accumulation of the glycosphingolipid, globotriaosylceramide, which leads to Fabry disease. Small-molecule chaperones that bind to mutant enzyme proteins and correct their misfolding and mistrafficking have emerged as a potential therapy for Fabry disease.

View Article and Find Full Text PDF

Mutations in alpha-glucosidase cause accumulation of glycogen in lysosomes, resulting in Pompe disease, a lysosomal storage disorder. Small molecule chaperones that bind to enzyme proteins and correct the misfolding and mistrafficking of mutant proteins have emerged as a new therapeutic approach for the lysosomal storage disorders. In addition, alpha-glucosidase is a therapeutic target for type II diabetes, and alpha-glucosidase inhibitors have been used in the clinic as alternative treatments for this disease.

View Article and Find Full Text PDF