Publications by authors named "Omid Majdani"

Background: Minimally invasive cochlear implant surgery by using a microstereotactic frame demands solid connection to the bone. We aimed to determine the stability of commercially available orthodontic miniscrews to evaluate their feasibility for frame's fixation. In addition, which substitute material most closely resembles the mechanical properties of the human temporal bone was evaluated.

View Article and Find Full Text PDF

Purpose: Minimally invasive cochlear implant surgery using a micro-stereotactic surgical targeting system with on-site moulding of the template aims for a reliable, less experience-dependent access to the inner ear under maximal reduction of trauma to anatomic structures. We present an accuracy evaluation of our system in ex-vivo testing.

Methods: Eleven drilling experiments were performed on four cadaveric temporal bone specimens.

View Article and Find Full Text PDF

Objectives: Drilling a minimally invasive access to the inner ear is a demanding task in which a computer-assisted surgical system can support the surgeon. Herein, we describe the design of a new micro-stereotactic targeting system dedicated to cochlear implant (CI) surgery and its experimental evaluation in an ex vivo study.

Methods: The proposed system consists of a reusable, bone-anchored reference frame, and a patient-specific drilling jig on top of it.

View Article and Find Full Text PDF

For cochlear implants (CI) a final position of the electrode array (EA) along the inner wall of the spirally shaped cochlea is considered to be beneficial because it results in a closer proximity to the auditory nerve fibers. A shape memory effect (SME) could facilitate such shift of the EA toward the cochlear inner wall, but its implementation remains to be solved. The current study presents an EA prototype featuring the SME with minute adjustments of the material properties of Nitinol, a shape memory alloy, in combination with a suitable cooling strategy to prevent premature curling.

View Article and Find Full Text PDF

We explain our concept for customization of a guidance instrument, present a prototype, and describe a set of experiments to evaluate its positioning and drilling accuracy. Our concept is characterized by the use of bone cement, which enables fixation of a specific configuration for each individual surgical template. This well-established medical product was selected to ensure future intraoperative fabrication of the template under sterile conditions.

View Article and Find Full Text PDF

Objectives: (1) To assess variations of the human intracochlear anatomy and quantify factors which might be relevant for cochlear implantation (CI) regarding surgical technique and electrode design. (2) Search for correlations of these factors with clinically assessable measurements.

Design: Human temporal bone study with micro computed tomography (μCT) data and analysis of intracochlear geometrical variations: μCT data of 15 fresh human temporal bones was generated, and the intracochlear lumina scala tympani (ST) and scala vestibuli were manually segmented using custom software specifically designed for accurate cochlear segmentation.

View Article and Find Full Text PDF

Statistical knowledge about many patients could be exploited using machine learning to provide supporting information to otolaryngologists and other hearing health care professionals, but needs to be made accessible. The Common Audiological Functional Parameters (CAFPAs) were recently introduced for the purpose of integrating data from different databases by providing an abstract representation of audiological measurements. This paper aims at collecting expert labels for a sample database and to determine statistical models from the labelled data set.

View Article and Find Full Text PDF

Objective: The intracochlear position of an electrode array may influence the outcome after cochlear implantation. The design of the electrode array can increase the risk of trauma causing penetration of the basilar membrane or shift of the electrode array into the scala vestibuli. The aim of the present study was to identify a scalar shift after implantation of two different electrode arrays developed by one manufacturer.

View Article and Find Full Text PDF

The aim of the study was to investigate the extent of MRI artefacts due to the magnet of selected auditory implants. Artefacts of the Synchrony cochlear implant at 1.5 T as well as at 3 T MRI devices were examined in cadavers and compared to the artefacts in MRI scans at 1.

View Article and Find Full Text PDF

Surgical treatment with a cochlear implant (CI) for hearing rehabilitation requires a highly accurate and personalized opening of the inner ear (cochlea) to protect the delicate intra-cochlear fine structures, whose functional integrity needs to be maintained to preserve residual hearing. Spatial orientation within the complex anatomy of the lateral skull base during the procedure is a highly demanding task for the surgeon. In order to reduce risk of facial nerve palsy and loss of residual hearing as well as to establish minimally invasive CI surgery (minCIS), image-guided procedures incorporating surgical assistance systems are under development.

View Article and Find Full Text PDF

Purpose: Minimally invasive cochlear implant surgery is a challenging procedure due to high demands on accuracy. For clinical success, an according assistance system has to compete against the traditional approach in terms of risk, operating time and cost. It has not yet been determined what kind of system is the most suited.

View Article and Find Full Text PDF

Objective: As a step towards objectifying audiological rehabilitation and providing comparability between different test batteries and clinics, the Common Audiological Functional Parameters (CAFPAs) were introduced as a common and abstract representation of audiological knowledge obtained from diagnostic tests.

Design: Relationships between CAFPAs as an intermediate representation between diagnostic tests and audiological findings, diagnoses and treatment recommendations (summarised as "diagnostic cases") were established by means of an expert survey. Expert knowledge was collected for 14 given categories covering different diagnostic cases.

View Article and Find Full Text PDF

Introduction: Different approaches have been developed to find the position of the internal auditory canal (IAC) in middle cranial fossa approach. A feasibility study was performed to investigate the combination of cone beam computed tomography (CBCT), optical coherence tomography (OCT), and laser ablation to assist a surgeon in a middle cranial fossa approach by outlining the internal auditory canal (IAC).

Materials And Methods: A combined OCT laser setup was used to outline the position of IAC on the surface of the petrous bone in cadaveric semi-heads.

View Article and Find Full Text PDF

Objectives: The aim of this study was to identify anatomical indication ranges for different lateral wall cochlear implant electrodes to support surgeons in the preoperative preparation.

Methods: 272 patients who were implanted with a FLEX20, FLEX24, FLEX28, or a custom-made device (CMD) were included in this study. The cochlear duct length (CDL) and basal cochlear diameter (length A) were measured within preoperative imaging data.

View Article and Find Full Text PDF

Purpose: Latest research on cochlear implantations focuses on hearing preservation during insertion of the implant's electrode array by reducing insertion trauma. One parameter which may influence trauma is insertion speed. The objective of this study was to extend the range of examined insertion speeds to include ultra-low velocities, being lower than manually feasible, and investigate whether these reduce insertion forces.

View Article and Find Full Text PDF

Objective: Within the field of cochlear implantation (CIs), the role of utilizing patient-specific cochlear anatomy for choosing the optimal implant electrode is becoming increasingly important. Unfortunately, performing detailed anatomical measurements of a cochlea using clinical imaging data is rather time consuming and hence difficult to implement into the clinical routine. In order to accelerate clinical cochlear anatomy evaluations, previously developed mathematical models can be adjusted to the patient-specific anatomy by measuring just a few overall cochlear dimensions.

View Article and Find Full Text PDF

Purpose: Patient specific selection of cochlear implants would benefit from pre-operative knowledge of cochlear length. Several methods for its measurement or estimation have been described in literature. This study focused on the achievable accuracy in clinically available imaging.

View Article and Find Full Text PDF

Cochlear implantation can restore a certain degree of auditory impression of patients suffering from profound hearing loss or deafness. Furthermore, studies have shown that in case of residual hearing, patients benefit from the use of a hearing aid in addition to the cochlear implant. The presented studies aim at the improvement of this electromechanical stimulation (EMS) approach by substituting the external hearing aid by an internal stimulus provided by miniaturized piezoelectric actuators.

View Article and Find Full Text PDF

The present study focuses on the application of scanning laser optical tomography (SLOT) for visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique which allows for tomographic imaging of the internal structure of transparent specimens. Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy.

View Article and Find Full Text PDF

This study was conducted to evaluate the effect of the round window membrane accessibility on the residual hearing after cochlear implantation surgery in adults. Moreover, the effects of the other demographics and intra-operative factors on the residual hearing loss have been evaluated. The hearing preservation cochlear implantation surgery was performed on 64 adults with residual hearing thresholds ≤80 dB at 250 and 500 Hz, who had referred to our tertiary academic center.

View Article and Find Full Text PDF

Objectives: This investigation evaluated the effect of cochlear implant (CI) electrode length on speech comprehension in quiet and noise and compare the results with those of EAS users.

Methodes: 91 adults with some degree of residual hearing were implanted with a FLEX20, FLEX24, or FLEX28 electrode. Some subjects were postoperative electric-acoustic-stimulation (EAS) users; the other subjects were in the groups of electric stimulation-only (ES-only).

View Article and Find Full Text PDF

Purpose: Mastoid cells as well as trabecula provide unique bone structures, which can serve as natural landmarks for registration. Preoperative imaging enables sufficient acquisition of these structures, but registration requires an intraoperative counterpart. Since versatile surgical interventions involve drilling into mastoid cells and trabecula, we propose a registration method based on endoscopy inside of these drill holes.

View Article and Find Full Text PDF

The aim of the study was to evaluate insertion forces during manual insertion of a straight atraumatic electrode in human temporal bones, and post-implantation histologic evaluation of the samples to determine whether violation of intracochlear structures is related to insertion forces. In order to minimize intracochlear trauma and preserve residual hearing during cochlear implantation, knowledge of the insertion forces is necessary. Ten fresh frozen human temporal bones were prepared with canal wall down mastoidectomy.

View Article and Find Full Text PDF

Introduction: Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.

View Article and Find Full Text PDF

The objective is to investigate whether there is a correlation between the severity of typical brain lesions in congenital cytomegalovirus (cCMV) infection and cochlear implant (CI) outcome. The design of the study is a retrospective single-institutional chart review (2005-2015), performed in a tertiary academic referral center. 23 children with typical signs of cCMV infection on cerebral magnetic resonance imaging (MRI) and bilateral severe-to-profound sensorineural hearing loss were retrospectively evaluated.

View Article and Find Full Text PDF