Publications by authors named "Omerzu M"

Transition through cell cycle phases requires temporal and spatial regulation of gene expression to ensure accurate chromosome duplication and segregation. This regulation involves dynamic reprogramming of gene expression at multiple transcriptional and posttranscriptional levels. In transcriptionally silent oocytes, the CPEB-family of RNAbinding proteins coordinates temporal and spatial translation regulation of stored maternal mRNAs to drive meiotic progression.

View Article and Find Full Text PDF

The culturing of mini-organs (organoids) in three-dimensions (3D) presents a simple and powerful tool to investigate the principles underlying human organ development and tissue self-organization in both healthy and diseased states. Applications of single molecule analysis are highly informative for a comprehensive understanding of the complexity underlying tissue and organ physiology. To fully exploit the potential of single molecule technologies, the adjustment of protocols and tools to 3D tissue culture is required.

View Article and Find Full Text PDF

Organoid technology provides the possibility of culturing patient-derived colon tissue and colorectal cancers (CRCs) while maintaining all functional and phenotypic characteristics. Labeling stem cells, especially in normal and benign tumor organoids of human colon, is challenging and therefore limits maximal exploitation of organoid libraries for human stem cell research. Here, we developed STAR (stem cell Ascl2 reporter), a minimal enhancer/promoter element that reports transcriptional activity of ASCL2, a master regulator of LGR5 intestinal stem cells.

View Article and Find Full Text PDF

Cdk1 (Cdc28 in yeast) is a cyclin-dependent kinase (CDK) essential for cell cycle progression and cell division in normal cells. However, CDK activity also underpins proliferation of tumor cells, making it a relevant study subject. While numerous targets and processes regulated by Cdc28 have been identified, the exact functions of Cdc28 are only partially understood.

View Article and Find Full Text PDF

Background: Triple-negative breast cancers (TNBC) are considered the most aggressive type of breast cancer, for which no targeted therapy exists at the moment. These tumors are characterized by having a high degree of chromosome instability and often overexpress the spindle assembly checkpoint kinase TTK. To explore the potential of TTK inhibition as a targeted therapy in TNBC, we developed a highly potent and selective small molecule inhibitor of TTK, NTRC 0066-0.

View Article and Find Full Text PDF

Mitotic chromosome segregation is initiated by the anaphase promoting complex/cyclosome (APC/C) and its co-activator CDC20 (forming APC/C(CDC20)). APC/C(CDC20) is inhibited by the spindle assembly checkpoint (SAC) when chromosomes have not attached to spindle microtubules. Unattached kinetochores catalyze the formation of a diffusible APC/C(CDC20) inhibitor that comprises BUBR1 (also known as BUB1B), BUB3, MAD2 (also known as MAD2L1) and a second molecule of CDC20.

View Article and Find Full Text PDF

Regulated recruitment of the kinase-adaptor complex BUB1/BUB3 to kinetochores is crucial for correcting faulty chromosome-spindle attachments and for spindle assembly checkpoint (SAC) signaling. BUB1/BUB3 localizes to kinetochores by binding phosphorylated MELT motifs (MELpT) in the kinetochore scaffold KNL1. Human KNL1 has 19 repeats that contain a MELT-like sequence.

View Article and Find Full Text PDF

Fidelity of chromosome segregation is monitored by the spindle assembly checkpoint (SAC). Key components of the SAC include MAD1, MAD2, BUB1, BUB3, BUBR1, and MPS1. These proteins accumulate on kinetochores in early prometaphase but are displaced when chromosomes attach to microtubules and/or biorient on the mitotic spindle.

View Article and Find Full Text PDF

Fidelity of chromosome segregation relies on coordination of chromosome biorientation and the spindle checkpoint. Central to this is the kinetochore scaffold KNL1 that integrates the functions of various mitotic regulators including BUB1 and BUBR1. We show that KNL1 contains an extensive array of short linear sequence modules that encompass TxxΩ and MELT motifs and that can independently localize BUB1.

View Article and Find Full Text PDF

Cyclin-dependent kinases (CDKs) control the eukaryotic cell cycle, and a single CDK, Cdc28 (also known as Cdk1), is necessary and sufficient for cell cycle regulation in the budding yeast Saccharomyces cerevisiae. Cdc28 regulates cell cycle-dependent processes such as transcription, DNA replication and repair, and chromosome segregation. To gain further insight into the functions of Cdc28, we performed a high-throughput chemical-genetic array (CGA) screen aimed at unraveling the genetic network of CDC28.

View Article and Find Full Text PDF