Type I Diabetes is an endocrine disorder that prevents the pancreas from regulating the blood glucose (BG) levels in a patient's body. The ubiquitous Linear-Quadratic-Integral-Regulator (LQIR) is an optimal glycemic regulation strategy; however, it is not resilient enough to withstand measurement noise and meal disruptions. The Sliding-Mode-Controller (SMC) yields robust BG regulation effort at the expense of a discontinuous insulin infusion rate that perturbs the BG concentrations.
View Article and Find Full Text PDFThis paper formulates an innovative model-free self-organizing weight adaptation that strengthens the robustness of a Linear Quadratic Regulator (LQR) for inverted pendulum-like mechatronic systems against perturbations and parametric uncertainties. The proposed control procedure is devised by using an online adaptation law to dynamically adjust the state weighting factors of LQR's quadratic performance index via pre-calibrated state-error-dependent hyperbolic secant functions (HSFs). The updated state-weighting factors re-compute the optimal control problem to modify the state-compensator gains online.
View Article and Find Full Text PDFMonkeypox is a rare zoonotic DNA with lineage from the Poxviridae family, Chordopoxvirinae subfamily, and Orthopoxvirus genus. With a previous history of controlled and contained occasional outbreaks of the virus, currently, a widely erupted outbreak of monkeypox with progressively rising numbers has been reported since May 2022 in multiple countries of the western hemisphere that are not historically endemic for this infection, particularly the United Kingdom and European Union countries. We have written a comprehensive review article to help clinicians better understand the disease.
View Article and Find Full Text PDFThis article presents flexible online adaptation strategies for the performance-index weights to constitute a variable structure Linear-Quadratic-Integral (LQI) controller for an under-actuated rotary pendulum system. The proposed control procedure undertakes to improve the controller's adaptability, allowing it to flexibly manipulate the control stiffness which aids in efficiently rejecting the bounded exogenous disturbances while preserving the system's closed-loop stability and economizing the overall control energy expenditure. The proposed scheme is realized by augmenting the ubiquitous LQI controller with an innovative online weight adaptation law that adaptively modulates the state-weighting factors of the internal performance index.
View Article and Find Full Text PDFThis paper formulates an enhanced Model-Reference-Adaptive-Controller (MRAC) that is augmented with a fuzzy-immune adaptive regulator to strengthen the disturbance-attenuation capability of closed-loop under-actuated systems. The proposed scheme employs the conventional state-space MRAC and augments it with a pre-configured fuzzy-immune mechanism that acts as a superior regulator to dynamically modulate the adaptation gains of the Lyapunov gain-adjustment law. The immunological computations increase the controller's adaptability to flexibly manipulate the damping control effort under exogenous disturbances.
View Article and Find Full Text PDFThis paper presents an experimental comparison of four different hierarchical self-tuning regulatory control procedures in enhancing the robustness of the under-actuated systems against bounded exogenous disturbances. The proposed hierarchical control procedure augments the ubiquitous Linear-Quadratic-Regulator (LQR) with an online reconfiguration block that acts as a superior regulator to dynamically adjust the critical weighting-factors of LQR's quadratic-performance-index (QPI). The Algebraic-Riccati-Equation (ARE) uses these updated weighting-factors to re-compute the optimal control problem, after every sampling interval, to deliver time-varying state-feedback gains.
View Article and Find Full Text PDF