Gephyrocapsa huxleyi is a prevalent, bloom-forming phytoplankton species in the oceans. It exhibits a complex haplodiplontic life cycle, featuring a diploid-calcified phase, a haploid phase and a third 'decoupled' phase produced during viral infection. Decoupled cells display a haploid-like phenotype, but are diploid.
View Article and Find Full Text PDFIntroduction: Bloodstream infections caused by AmpC-producing Enterobacterales pose treatment challenges due to the risk of AmpC overproduction and treatment failure. Current guidelines recommend carbapenems or cefepime as optimal therapy. We aimed to evaluate empiric and definitive non-carbapenem regimens for these infections.
View Article and Find Full Text PDFBreast cancer (BC) is the most common malignancy affecting Western women today. It is estimated that as many as 10% of BC cases can be attributed to germline variants. However, the genetic basis of the majority of familial BC cases has yet to be identified.
View Article and Find Full Text PDFChlorella ohadii was isolated from desert biological soil crusts, one of the harshest habitats on Earth, and is emerging as an exciting new green model for studying growth, photosynthesis and metabolism under a wide range of conditions. Here, we compared the genome of C. ohadii, the fastest growing alga on record, to that of other green algae, to reveal the genomic imprints empowering its unparalleled growth rate and resistance to various stressors, including extreme illumination.
View Article and Find Full Text PDFCoinfection of HIV and multidrug-resistant tuberculosis (MDR-TB) presents significant challenges in terms of the treatment and prognosis of tuberculosis, leading to complexities in managing the disease and impacting the overall outcome for TB patients. This study presents a remarkable case of a patient with MDR-TB and HIV coinfection who survived for over 8 years, despite poor treatment adherence and comorbidities. Whole genome sequencing (WGS) of the infecting () strain revealed a unique genomic deletion, spanning 18 genes, including key genes involved in hypoxia response, intracellular survival, immunodominant antigens, and dormancy.
View Article and Find Full Text PDFRecent advances in genomic technologies expand the scope and efficiency of preimplantation genetic testing (PGT). We previously developed Haploseek, a clinically-validated, variant-agnostic comprehensive PGT solution. Haploseek is based on microarray genotyping of the embryo's parents and relatives, combined with low-pass sequencing of the embryos.
View Article and Find Full Text PDFComplex chromosomal rearrangements (CCRs), a class of structural variants (SVs) involving more than two chromosome breaks, were classically thought to be extremely rare. As advanced technologies become more available, it has become apparent that CCRs are more common than formerly thought, and are a substantial cause of genetic disorders. We attempted a novel approach for solving the mechanism of challenging CCRs, which involve repetitive sequences, by precisely identifying sequence-level changes and their order.
View Article and Find Full Text PDFVariants involving TBX4 are associated with a wide variety of disorders, including pulmonary arterial hypertension, ischiocoxopodopatellar syndrome (ICPPS)/small patella syndrome (SPS), lethal lung developmental disorders (LLDDs) in neonates, heart defects, and prenatally lethal posterior amelia with pelvic and pulmonary hypoplasia syndrome. The objective of our study was to elucidate the wide variable phenotypic expressivity and incomplete penetrance in a three-generation family with a truncating variant in TBX4. In addition to exome and genome sequencing analyses, a candidate noncoding regulatory single nucleotide variant (SNV) within the lung-specific TBX4 enhancer was functionally tested using an in vitro luciferase reporter assay.
View Article and Find Full Text PDFMore than 900 variants have been described in the GLA gene. Some intronic variants and copy number variants in GLA can cause Fabry disease but will not be detected by classical Sanger sequence. We aimed to design and validate a method for sequencing the GLA gene using long-read Oxford Nanopore sequencing technology.
View Article and Find Full Text PDFPhotosynthesis in deserts is challenging since it requires fast adaptation to rapid night-to-day changes, that is, from dawn's low light (LL) to extreme high light (HL) intensities during the daytime. To understand these adaptation mechanisms, we purified photosystem I (PSI) from Chlorella ohadii, a green alga that was isolated from a desert soil crust, and identified the essential functional and structural changes that enable the photosystem to perform photosynthesis under extreme high light conditions. The cryo-electron microscopy structures of PSI from cells grown under low light (PSI) and high light (PSI), obtained at 2.
View Article and Find Full Text PDFDesiccation-tolerant cyanobacteria can survive frequent hydration/dehydration cycles likely affecting inorganic carbon (Ci) levels. It was recently shown that red/far-red light serves as signal-preparing cells toward dehydration. Here, the effects of desiccation on Ci assimilation by isolated from Israel's Negev desert were investigated.
View Article and Find Full Text PDFDuring meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes.
View Article and Find Full Text PDFBiological soil crusts (BSCs) are found in drylands, cover ∼12% of the Earth's surface in arid and semi-arid lands and their destruction is considered an important promoter of desertification. These crusts are formed by the adhesion of soil particles to polysaccharides excreted mostly by filamentous cyanobacteria, which are the pioneers and main primary producers in BSCs. Desert BSCs survive in one of the harshest environments on Earth, and are exposed to daily fluctuations of extreme conditions.
View Article and Find Full Text PDFPatients with type 1 diabetes mellitus (T1DM) exhibit reduced BMD and significant increases in fracture risk. Changes in BMD are attributed to blunted osteoblast activity and inhibited bone remodeling, but these cannot fully explain the impaired bone integrity in T1DM. The goal of this study was to determine the cellular mechanisms that contribute to impaired bone morphology and composition in T1DM.
View Article and Find Full Text PDFIn multicellular organisms, Polycomb Repressive Complex2 (PRC2) is known to deposit tri-methylation of lysine 27 of histone H3 (H3K27me3) to establish and maintain gene silencing, critical for developmentally regulated processes. The PRC2 complex is absent in both widely studied model yeasts, which initially suggested that PRC2 arose with the emergence of multicellularity. However, its discovery in several unicellular species including microalgae questions its role in unicellular eukaryotes.
View Article and Find Full Text PDFPgr5 proteins play a major direct role in cyclic electron flow paths in plants and eukaryotic phytoplankton. The genomes of many cyanobacterial species code for Pgr5-like proteins but their function is still uncertain. Here, we present evidence that supports a link between the Synechocystis sp.
View Article and Find Full Text PDFThe unparalleled performance of Chlorella ohadii under irradiances of twice full sunlight underlines the gaps in our understanding of how the photosynthetic machinery operates, and what sets its upper functional limit. Rather than succumbing to photodamage under extreme irradiance, unique features of photosystem II function allow C. ohadii to maintain high rates of photosynthesis and growth, accompanied by major changes in composition and cellular structure.
View Article and Find Full Text PDFMitochondria serve as major sites of ATP production and play key roles in many other metabolic processes that are critical to the cell. As relicts of an ancient bacterial endosymbiont, mitochondria contain their own hereditary material (i.e.
View Article and Find Full Text PDFVarious approaches have been proposed to control/eliminate toxic Microcystis sp. blooms including H O treatments. Earlier studies showed that pre-exposure of various algae to oxidative stress induced massive cell death when cultures were exposed to an additional H O treatment.
View Article and Find Full Text PDFstrain A134 was isolated from colonies collected from Lake Kinneret (Sea of Galilee), Israel. The culture media inhibited the growth of (strain MGK). The crude extract of a large-scale culture of A134 was separated in a few chromatographic steps to yield three new secondary metabolites, 9-chlorolumichrome (), veronimide () and veronipyrazine (), along with a known lumichrome and several known diketopiperazines.
View Article and Find Full Text PDFCyanobacteria inhabiting desert biological soil crusts must prepare towards dehydration, or their revival after rewetting is severely impaired. The mechanisms involved are unknown but signalling of forthcoming dehydration by dawn illumination was demonstrated. Accurate and reproducible simulation of desert conditions enabled examination of physiological activities and transcript profiles in a model organism, Leptolyngbya ohadii, in response to specific conditions.
View Article and Find Full Text PDFToxic Microcystis spp. blooms constitute a serious threat to water quality worldwide. Aeromonas veronii was isolated from Microcystis sp.
View Article and Find Full Text PDFDiatom dominance in contemporary aquatic environments indicates that they have developed unique and effective mechanisms to cope with the rapid and considerable fluctuations that characterize these environments. In view of their evolutionary history from a secondary endosymbiosis, inter-organellar regulation of biochemical activities may be of particular relevance. Diatom mitochondrial alternative oxidase (AOX) is believed to play a significant role in supplying chloroplasts with ATP produced in the mitochondria.
View Article and Find Full Text PDFDesert biological soil crusts (BSC), among the harshest environments on Earth, are formed by the adhesion of soil particles to polysaccharides excreted mainly by filamentous cyanobacteria (see [1] and references therein). These species are the main primary producers in this habitat where they cope with various stressors including frequent hydration-dehydration cycles. Water is mainly provided as early-morning dew, followed by dehydration with rising temperatures and declining relative humidity.
View Article and Find Full Text PDF