Publications by authors named "Omer Harel"

Chemical protein synthesis provides a powerful means to prepare novel modified proteins with precision down to the atomic level, enabling an unprecedented opportunity to understand fundamental biological processes. Of particular interest is the process of gene expression, orchestrated through the interactions between transcription factors (TFs) and DNA. Here, we combined chemical protein synthesis and high-throughput screening technology to decipher the role of post-translational modifications (PTMs), e.

View Article and Find Full Text PDF

Site-selective functionalization strategies are in high demand to prepare well-defined homogeneous proteins for basic research and biomedical applications. In this regard, cysteine-based reactions have enabled a broad set of transformations to produce modified proteins for various applications. However, these approaches were mainly employed to modify a single reactive site with a specific transformation.

View Article and Find Full Text PDF

Synthetic strategies to assemble peptide fragments are in high demand to access homogeneous proteins for various applications. Here, we combined native chemical ligation (NCL) and Pd-mediated Cys arylation to enable practical peptide ligation at aromatic junctions. The utility of one-pot NCL and S-arylation at the Phe and Tyr junctions was demonstrated and employed for the rapid chemical synthesis of the DNA-binding domains of the transcription factors Myc and Max.

View Article and Find Full Text PDF

Nature has developed a plethora of protein machinery to operate and maintain nearly every task of cellular life. These processes are tightly regulated via post-expression modifications-transformations that modulate intracellular protein synthesis, folding, and activation. Methods to prepare homogeneously and precisely modified proteins are essential to probe their function and design new bioactive modalities.

View Article and Find Full Text PDF

Posttranslational modifications (PTMs) dramatically expand the functional diversity of the proteome. The precise addition and removal of PTMs appears to modulate protein structure and function and control key regulatory processes in living systems. Deciphering how particular PTMs affect protein activity is a current frontier in biology and medicine.

View Article and Find Full Text PDF