Publications by authors named "Omer Gottesman"

Intensive care medicine is complex and resource-demanding. A critical and common challenge lies in inferring the underlying physiological state of a patient from partially observed data. Specifically for the cardiovascular system, clinicians use observables such as heart rate, arterial and venous blood pressures, as well as findings from the physical examination and ancillary tests to formulate a mental model and estimate hidden variables such as cardiac output, vascular resistance, filling pressures and volumes, and autonomic tone.

View Article and Find Full Text PDF

Sepsis is the leading cause of mortality in the ICU. It is challenging to manage because individual patients respond differently to treatment. Thus, tailoring treatment to the individual patient is essential for the best outcomes.

View Article and Find Full Text PDF

Simulation-based approaches to disease progression allow us to make counterfactual predictions about the effects of an untried series of treatment choices. However, building accurate simulators of disease progression is challenging, limiting the utility of these approaches for real world treatment planning. In this work, we present a novel simulation-based reinforcement learning approach that mixes between models and kernel-based approaches to make its forward predictions.

View Article and Find Full Text PDF

We observe nonmonotonic aging and memory effects, two hallmarks of glassy dynamics, in two disordered mechanical systems: crumpled thin sheets and elastic foams. Under fixed compression, both systems exhibit monotonic nonexponential relaxation. However, when after a certain waiting time the compression is partially reduced, both systems exhibit a nonmonotonic response: the normal force first increases over many minutes or even hours until reaching a peak value, and only then is relaxation resumed.

View Article and Find Full Text PDF

A crumpled sheet of paper displays an intricate pattern of creases and point-like singular structures, termed d-cones. It is typically assumed that elongated creases form when ridges connecting two d-cones fold beyond the material yielding threshold, and scarring is thus a by-product of the folding dynamics that seek to minimize elastic energy. Here we show that rather than merely being the consequence of folding, plasticity can act as its instigator.

View Article and Find Full Text PDF

Isolated populations ultimately go extinct because of the intrinsic noise of elementary processes. In multipopulation systems extinction of a population may occur via more than one route. We investigate this generic situation in a simple predator-prey (or infected-susceptible) model.

View Article and Find Full Text PDF