The almost-two-centuries history of spectrochemical analysis has generated a body of literature so vast that it has become nearly intractable for experts, much less for those wishing to enter the field. Authoritative, focused reviews help to address this problem but become so granular that the overall directions of the field are lost. This broader perspective can be provided partially by general overviews but then the thinking, experimental details, theoretical underpinnings and instrumental innovations of the original work must be sacrificed.
View Article and Find Full Text PDFThis work reports an investigation on the feasibility of using a photomultiplier tube (PMT) to follow the time evolution of self-absorption of copper resonance transitions at 324.7 nm and 327.4 nm.
View Article and Find Full Text PDFA spatial heterodyne spectrometer (SHS) is tested for the first time in combination with laser-induced breakdown spectroscopy (LIBS). The spectrometer is a modified version of the Michelson interferometer in which mirrors are replaced by diffraction gratings. The SHS contains no moving parts and the gratings are fixed at equal distances from the beam splitter.
View Article and Find Full Text PDFIn this study, we present an experimental investigation of the parameters of the laser spark ignition of premixed methane-air mixtures and the determination of the key factors for the ultimate ignition result. Ignition is achieved in a mesh honeycomb burner using the 1064 nm output of a neodymium-doped yttrium aluminum garnet (Nd : YAG) laser. All pertinent laser ignition parameters, including the minimum ignition energy, the ignition time and blow out time, and the effects that the variation of experimental conditions, such as the spark energy, ignition position, equivalence ratio (ER), and flow rate, have on these parameters have been addressed systematically.
View Article and Find Full Text PDFA method based on matching synthetic and experimental emissivity spectra was applied to spatially resolved measurements of a laser-induced plasma ignited in argon at atmospheric pressure. The experimental emissivity spectra were obtained by Abel inversion of intensity spectra measured from a thin plasma slice perpendicular to the plasma axis. The synthetic spectra were iteratively calculated from an equilibrium model of plasma radiation that included free-free, free-bound, and bound-bound transitions.
View Article and Find Full Text PDFThe first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) has become a very popular analytical method in the last decade in view of some of its unique features such as applicability to any type of sample, practically no sample preparation, remote sensing capability, and speed of analysis. The technique has a remarkably wide applicability in many fields, and the number of applications is still growing. From an analytical point of view, the quantitative aspects of LIBS may be considered its Achilles' heel, first due to the complex nature of the laser-sample interaction processes, which depend upon both the laser characteristics and the sample material properties, and second due to the plasma-particle interaction processes, which are space and time dependent.
View Article and Find Full Text PDFMulti-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear pulse configuration with time-integrating detection was performed on metallic samples in ambient air in an effort to clarify the contributing processes responsible for the signal enhancement observed in comparison with single-pulse excitation. Complementary experiments were also carried out on another LIBS setup using detection by an imaging spectrograph with high time resolution. The effects of laser bursts consisting of up to seven ns-range pulses from Nd-doped solid-state lasers operating at their fundamental wavelength and separated by 8.
View Article and Find Full Text PDFA simple, fast, reliable, sensitive and potentially portable explosive detection device was developed employing laser photofragmentation (PF) followed by heterogeneous chemiluminescence (CL) detection. The PF process involves the release of NO(x(x = 1,2)) moieties from explosive compounds such as TNT, RDX, and PETN through a stepwise excitation-dissociation process using a 193 nm ArF laser. The NO(x(x = 1,2)) produced upon PF is subsequently detected by its CL reaction with basic luminol solution.
View Article and Find Full Text PDFMaterials analysis and characterization can provide important information as evidence in legal proceedings. The potential of laser induced breakdown spectroscopy (LIBS) for the discrimination of glass fragments for forensic applications is presented here. The proposed method is based on the fact that glass materials can be characterized by their unique spectral fingerprint.
View Article and Find Full Text PDFThe gas-phase decomposition pathways of diethylzinc (DEZn), a common precursor for deposition of Zn-VI compounds, were investigated in detail. The homogeneous thermal decomposition of DEZn in N2 carrier was followed in an impinging-jet, up-flow reactor by Raman scattering. Density Functional Theory calculations were performed to describe the bond dissociation behavior using the model chemistry B3LYP/6-311G(d) to estimate optimal geometries and Raman active vibrational frequencies of DEZn, as well as anticipated intermediates and products.
View Article and Find Full Text PDFSilver colloids have been commonly used as substrates for surface enhanced Raman spectroscopy (SERS). It has been shown that SERS requires partial aggregation of the silver colloids. This study evaluates factors affecting the aggregative state of the silver colloids such as the age of the silver colloids and the aggregation as a result of addition of the analyte.
View Article and Find Full Text PDFThe lifetimes of several states in a thallium see-through hollow cathode discharge, or galvatron, are obtained to characterize its potential as an atomic line filter. The lifetimes of the thallium 6(2)D(3/2), 6(2)D(5/2), and 7(2)S(1/2) states are measured by time-resolved single-step laser-excited fluorescence by use of a 276.787 nm laser pulse or a 535.
View Article and Find Full Text PDFAppl Spectrosc
November 2004
A two-grating high-resolution spectrometer for dual wavelength imaging is demonstrated based on the standard Czerny-Turner mounting with an auxiliary grating and a mirror. A two-dimensional charge-coupled device (CCD) detector in the spectrometer focal plane allows simultaneous detection of two spectral intervals. Each spectrometer grating is driven by a high-precision stepper motor interfaced to a computer via home-made software.
View Article and Find Full Text PDFReal-time characterization of the chemical and physical properties of individual aerosol particles is an important issue in environmental studies. A well-established way of accomplishing this task relies on the use of laser-induced fluorescence or laser ionization mass spectrometry. We describe here a simple approach aimed at experimentally verifying that single particles are indeed addressed.
View Article and Find Full Text PDFThis work examines absorption spectrometry by narrowband light in gaseous media with arbitrary optical thickness when the light induces optical saturation or optical pumping. Two quantities are defined: the observed absorbance, A(obs), and the true absorbance, A(true). The former is the absorbance that is measured under the existing conditions, whereas the latter represents the absorbance one would measure if the light acted solely as a probe of the populations of the various levels, and it is therefore directly proportional to the concentration or density of absorbers.
View Article and Find Full Text PDFThe dynamics of the radiative plasma expansion into an ambient gas is considered. The model describes the evolution of the plasma emission spectrum and the dynamics of the resulting shock wave. The time frame for the applicability of the model is in the tens of nanoseconds after the laser pulse is terminated, until a few microseconds later when the plasma ceases to emit.
View Article and Find Full Text PDFA method of temperature measurement based on the model developed by Bartels of an optically thick inhomogeneous plasma was applied to a laser plasma induced on a target containing barium. The method involves the intensity ratio measurement of two self-reversed Ba(II) lines. The temperature thus determined corresponds to the maximum temperature in the plasma center.
View Article and Find Full Text PDFA commercial, 7 microJ/pulse, 550 ps microchip laser is used to induce plasma on Pb, Si, Cu, Fe, Ni, Ti, Zn, Ta, and Mo foils and a Si wafer. The measured plasma lifetime is comparable with the duration of the laser pulse (a few ns). The plasma continuum radiation is low, while some of the strong resonance lines (e.
View Article and Find Full Text PDFA new method for laser-enhanced ionization detection of mercury atoms in an inert gas atmosphere is described. The method, which is based on the avalanche amplification of the signal resulting from the ionization from a selected Rydberg level reached by a three-step laser excitation of mercury vapor in a simple quartz cell, can be applied to the determination of this element in various matrices by the use of conventional cold atomization techniques. The overall (collisional + photo) ionization efficiency is investigated at different temperatures, and the avalanche amplification effect is reported for Ar and P-10 gases at atmospheric pressure.
View Article and Find Full Text PDFAn experimental set-up for the detection of elemental chlorine in chlorinated hydrocarbons (CHCs) is described based on a miniaturized system, which could be used for on-line monitoring of chlorinated compounds. With an optimized time-resolved detection chlorine from CHCs like CCl(4) can be determined by Laser-Induced-Breakdown-Spectroscopy (LIBS) with microg/g-detection limits in the gas phase. The application of a miniaturized Nd : YAG laser resulted only in a minor loss in performance, hence it could be used for designing a rugged and small on-line sensor.
View Article and Find Full Text PDFThe absolute limit of detection usually expresses the minimum amount of analyte detectable, while the relative limit of detection refers to the minimum concentration of analyte detectable. These concepts and their differences are obviously familiar to all analytical spectroscopists. Nevertheless, the two definitions are used liberally in the literature.
View Article and Find Full Text PDF