Mycoplasma pneumoniae is a cell wall-less bacterial pathogen of the human respiratory tract that accounts for up to 20% of community-acquired pneumonia. At present, the standard for detection and genotyping is quantitative polymerase chain reaction (qPCR), which can exhibit excellent sensitivity but lacks standardization and has limited practicality for widespread, point-of-care use. We previously described a Ag nanorod array-surface enhanced Raman spectroscopy (NA-SERS) biosensing platform capable of detecting M.
View Article and Find Full Text PDFMycoplasma pneumoniae is a major cause of respiratory disease in humans and accounts for as much as 20% of all community-acquired pneumonia. Existing mycoplasma diagnosis is primarily limited by the poor success rate at culturing the bacteria from clinical samples. There is a critical need to develop a new platform for mycoplasma detection that has high sensitivity, specificity, and expediency.
View Article and Find Full Text PDFThis report examines lipophilic extracts containing mycolic acids isolated from tuberculosis (MTB) and non-tuberculosis (NTM) mycobacterial strains using chromatography, mass spectrometry (MS), nuclear magnetic resonance (NMR), and Raman spectroscopy. Gas chromatography-MS was used to identify major fatty acid mycolate components, while proton NMR confirmed the presence of characteristic cis- and trans-cyclopropane rings within different mycolic acid sub-types. Surface-enhanced Raman (SERS) spectra were obtained from the mycolic acids extracted from the bacterial cell envelopes of the MTB or NTM mycobacterial species.
View Article and Find Full Text PDFCyclic voltammetry (CV) measurements on (eta(2)-C(60))M(CO)(5) complexes (M = Cr, Mo, W) in dichloromethane show three [60]fullerene-centered and reversible reduction/oxidation waves. The E(1/2) values of these waves are shifted to positive values relative to the corresponding values of the uncoordinated [60]fullerene in the same solvent. A Jahn-Teller type distortion of the spherical surface of [60]fullerene promoted by [60]fullerene-metal pi-backbonding may explain the observed positive shifts.
View Article and Find Full Text PDF