This paper presents and demonstrates the three logic processing levels based on complementary photonic crystal logic devices through photonic integrated circuit modeling. We accomplished a set of logic circuits including AND, OR, NAND, NOR, XOR, FAN-OUT, HALF ADDER, and FULL ADDER based on photonic crystal slab platforms. Furthermore, we achieved efficient all-optical logic circuits with contrast ratios as high as 5.
View Article and Find Full Text PDFChemical reaction networks (CRNs) have been proposed as an abstraction for molecular computing. DNA strand displacement (DSD) reactions are good candidates to realize this endeavor, since DNA strands can be wired to implement the desired dynamic behavior in a test tube. Specialists use simulators to help them design such chemical systems before experimental implementation.
View Article and Find Full Text PDFWe theoretically propose and demonstrate through numerous simulations complementary photonic crystal integrated logic (CPCL) devices. Simulation results provide demonstration of a highly efficient clock rate, higher than 20 GHz, guaranteeing operation at both input and output with the same wavelength (around =1550). The proposed devices show well-defined output power values representing the two logic states 1 and 0, with a contrast ratio as high as 6 dB.
View Article and Find Full Text PDFThe emission of negative cluster ions produced by the impact of approximately 60 MeV (252)Cf fission fragments on a (7)LiF polycrystalline target is analyzed. The negative ion mass spectrum is dominated by the ((7)LiF)(n)F(-) series, n = 1 to approximately 30. The desorption yield distribution of the ((7)LiF)(n)F(-) members has a maximum at n = 2 and then decreases as the sum of two exponentials whose decay parameters are k(Fast) = 0.
View Article and Find Full Text PDF