High-saturated fat (HF) or high-fructose (HFr) consumption in children predispose them to metabolic syndrome (MetS). In rodent models of MetS, diets containing individually HF or HFr lead to a variable degree of MetS. Nevertheless, simultaneous intake of HF plus HFr have synergistic effects, worsening MetS outcomes.
View Article and Find Full Text PDFFront Pharmacol
December 2022
Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in hepatocytes, and in advanced stages, by inflammation and fibrosis. Excessive ROS production due to mitochondrial dysfunction contributes to NAFLD development, making the decrease in mitochondrial ROS production an emerging target to alleviate NAFLD. Previously, we have shown that avocado oil, a source of several bioactive compounds with antioxidant effects, decreases oxidative stress by improving the function of the mitochondrial electron transport chain (ETC) and decreasing ROS levels in mitochondria of diabetic and hypertensive rats.
View Article and Find Full Text PDFLipids Health Dis
March 2019
Background: High fat or fructose induces non-alcoholic fatty liver disease (NAFLD) accompanied of mitochondrial dysfunction and oxidative stress. Controversy remains about whether fructose or fat is more deleterious for NAFLD development. To get more insights about this issue and to determine if the severity of liver disease induced by fructose or fat is related to degree of mitochondrial dysfunction, we compared the effects of diets containing high fat (HF), fructose (Fr) or high fat plus fructose (HF + Fr) on NAFLD development, mitochondrial function, ROS production and lipid peroxidation.
View Article and Find Full Text PDFNutrition
October 2018
Objective: Angiotensin II (Ang-II) antagonism alleviates hypertensive kidney damage by improving mitochondrial function and decreasing oxidative stress. This condition also is associated with altered renal vascular tone due to enhanced constriction by Ang-II. Thus, approaches ameliorating these events are desirable to alleviate kidney damage.
View Article and Find Full Text PDFJ Bioenerg Biomembr
April 2017
Hyperglycemia and mitochondrial ROS overproduction have been identified as key factors involved in the development of diabetic nephropathy. This has encouraged the search for strategies decreasing glucose levels and long-term improvement of redox status of glutathione, the main antioxidant counteracting mitochondrial damage. Previously, we have shown that avocado oil improves redox status of glutathione in liver and brain mitochondria from streptozotocin-induced diabetic rats; however, the long-term effects of avocado oil and its hypoglycemic effect cannot be evaluated because this model displays low survival and insulin depletion.
View Article and Find Full Text PDFYeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨ), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation.
View Article and Find Full Text PDFDiabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications.
View Article and Find Full Text PDFJ Bioenerg Biomembr
August 2015
Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation.
View Article and Find Full Text PDFIncreased membrane unsaturation has been associated with shorter longevity due to higher sensitivity to lipid peroxidation (LP) leading to enhanced mitochondrial dysfunction and ROS overproduction. However, the role of LP during aging has been put in doubt along with the participation of electron leak at the electron transport chain (ETC) in ROS generation in aged organisms. Thus, to test these hypothesis and gain further information about how minimizing LP preserves ETC function during aging, we studied the effects of α-linolenic acid (C18:3) on in situ mitochondrial ETC function, ROS production and viability of chronologically aged cells of S.
View Article and Find Full Text PDFJ Bioenerg Biomembr
June 2013
Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria.
View Article and Find Full Text PDFDiabetes mellitus (DM) is a significant risk factor for the development of cardiovascular complications. This study was undertaken to investigate the effect of chronic administration of ethanolic extract of Eryngium carlinae on glucose, creatinine, uric acid, total cholesterol, and triglycerides levels in serum of streptozotocin- (STZ-) induced diabetic rats. Triglycerides, total cholesterol, and uric acid levels increased in serum from diabetic rats.
View Article and Find Full Text PDF