Publications by authors named "Omar K Zahr"

Although there have been many advances in synthesizing nanoparticles, their assembly into deterministic and controllable patterns remains a major challenge. Biological systems operate at the nanoscale, building structural components with great chemical specificity that enable the processes of life. By adapting them to our needs, it is possible to utilize well-defined and well-controlled scaffolds to produce materials with novel properties resulting from precise ordering on the nanoscale.

View Article and Find Full Text PDF

The fabrication of plasmonic nanorings remains of substantial interest by virtue of their enhanced electric and magnetic response to light fields which can be subsequently exploited in diverse applications. Scaling down the size of nanorings holds promise in creating artificial magnetism at wavelengths matching the solar spectrum. Nanosized bioscaffolds can be utilized to tackle the challenge of size reduction of metallic rings owing to their miniature features as well as their well-known biomineralization capacity.

View Article and Find Full Text PDF

Bottom-up self-assembly techniques are a powerful method of building nanoscale structures in an energy efficient and cost effective manner. The use of biological templates, such as proteins, takes advantage of the monodispersity and precision of naturally evolved systems to produce highly organized assemblies of small molecules and nanoparticles. Here we describe a method whereby arginine residues on a viral coat protein (Tobacco Mosaic Virus) are targeted by bis(p-sulfonatophenyl)phenylphosphine (BSPP)-passivated gold nanoparticles with high specificity to create 22 nm rings.

View Article and Find Full Text PDF

Current studies on materials that exhibit metamaterial properties are mainly focused on lithography-generated 2D substrates. Here we report the successful fabrication of 22 nm gold nanoparticle rings with and without a central nanoparticle assembled on Tobacco Mosaic Virus coat protein disks. These structures are one of the first examples of nanorings produced independently of a substrate and represent the first steps toward the realization of a solution-phase or coatings-based metamaterial.

View Article and Find Full Text PDF

A common challenge in nanotechnology is the fabrication of materials with well-defined nanoscale structure and properties. Here we report that a genetically engineered tobacco mosaic virus (TMV) coat protein (CP), to which a hexahistidine (His) tag was incorporated, can self-assemble into disks, hexagonally packed arrays of disks, stacked disks, helical rods, fibers, and elongated rafts. The insertion of a His tag to the C-terminus of TMV-CP was shown to significantly affect the self-assembly in comparison to the wild type, WT-TMV-CP.

View Article and Find Full Text PDF