Cloud forests are unique biomes that thrive in foggy environments for a substantial part of the season. Fog in cloud forests plays two critical roles: it reduces incoming radiation and creates a humid environment, leading to the wetting of the canopy. This paper aims to investigate the combined effect of both radiation and wetness on Myrica faya Wilbur-a cloud forest species present in subtropical regions-both directly in plants and through simulations.
View Article and Find Full Text PDFOlive trees, alongside grapevines, dominate the Mediterranean tree crop landscape. However, as climate change intensifies, the Mediterranean region, which encompasses 95% of the global olive cultivation area, faces significant challenges. Rising carbon dioxide (CO) levels, increasing temperatures, and declining precipitation pose substantial threats to olive tree performance.
View Article and Find Full Text PDFElevated temperatures during berry ripening have been shown to affect grape quality. The crop forcing technique (summer pruning that 'force' the vine to start a new cycle) has been shown to improve berry quality by delaying the harvest date. However, yield is typically reduced on forced vines, which is attributed to vine low carbon availability soon after forcing and likely incomplete inflorescence formation.
View Article and Find Full Text PDFSeveral simulation models of the olive crop have been formulated so far, but none of them is capable of analyzing the impact of environmental conditions and management practices on water relations, growth and productivity under both well-irrigated and water-limiting irrigation strategies. This paper presents and tests OliveCan, a process-oriented model conceived for those purposes. In short, OliveCan is composed of three main model components simulating the principal elements of the water and carbon balances of olive orchards and the impacts of some management operations.
View Article and Find Full Text PDFStomatal oscillations have long been disregarded in the literature despite the fact that the phenomenon has been described for a variety of plant species. This study aims to characterize the occurrence of oscillations in olive trees (Olea europaea L.) under different growing conditions and its methodological implications.
View Article and Find Full Text PDFThe effect of temperature on radial root hydraulic specific resistance (Rp) is a known phenomenon; however, the impact ofRpvariations expected from soil temperature changes over the tree root system is unknown. The present article analyses the relations hip ofRpwith temperature in olive 'Picual' and a hybrid rootstock, GF677, at five different temperatures, showing that a variation of 3- and 4.5-folds exists for olive 'Picual' and GF677 in the range from 10 to 20 °C.
View Article and Find Full Text PDF