Nanophononics has the potential for information transfer, in an analogous manner to its photonic and electronic counterparts. The adoption of phononic systems has been limited, due to difficulties associated with the generation, manipulation, and detection of phonons, especially at GHz frequencies. Existing techniques often require piezoelectric materials with an external radiofrequency excitation that are not readily integrated into existing CMOS infrastructures, while nonpiezoelectric demonstrations have been inefficient.
View Article and Find Full Text PDFPhonons play a key role in the physical properties of materials, and have long been a topic of study in physics. While the effects of phonons had historically been considered to be a hindrance, modern research has shown that phonons can be exploited due to their ability to couple to other excitations and consequently affect the thermal, dielectric, and electronic properties of solid state systems, greatly motivating the engineering of phononic structures. Advances in nanofabrication have allowed for structuring and phonon confinement even down to the nanoscale, drastically changing material properties.
View Article and Find Full Text PDF