Publications by authors named "Omar Feix do Nascimento"

Aims: To confirm the improved performance of the micro-hole zone catheter (MHZC) compared to a conventional eyelet catheter (CEC) in male users of clean intermittent catheterizations (CICs).

Methods: Male self-catheterizing subjects, who used hydrophilic sleeved soft/flexible CIC as the only bladder emptying method, were enrolled into a multi-center, randomized, cross-over study performed across six European sites. Subjects tested the MHZC, featuring a drainage zone with 120 micro-holes and a CEC with two eyelets.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) are common and troublesome complications of clean intermittent catheterisation (CIC) in individuals suffering from incomplete bladder emptying, which may exacerbate the underlying disease and lead to hospitalisation. Aside from the design of the intermittent catheter and its handling, a recent review highlighted residual urine as one of several UTI risk factors. A new urinary intermittent catheter with multiple micro-holes has been developed for improved bladder emptying.

View Article and Find Full Text PDF

The study investigates the accuracy in discriminating rate of torque development (RTD) and target torque (TT) (task parameters) from electroencephalography (EEG) signals generated during imaginary motor tasks. Signals were acquired from nine healthy subjects during four imaginary isometric plantar-flexions of the right foot involving two RTDs (ballistic and moderate) and two TTs (30 and 60% of the maximal voluntary contraction torque), each repeated 60 times in random order. The single-trial EEG traces were classified with a pattern recognition approach based on wavelet coefficients as features and support vector machine (SVM) as classifier.

View Article and Find Full Text PDF

The aim of this study was to discriminate on a single-trial basis the cortical activity associated to two rates of torque development (RTDs) in imaginary isometric plantar flexions. Electroencephalographic (EEG), electrooculographic (EOG), and electromyographic (EMG) signals were recorded while ten healthy subjects imagined right-sided isometric ankle plantar-flexion tasks at moderate [from 0% to 60% of the maximal voluntary contraction (MVC) in 4 s] and ballistic (from 0% to 60% MVC as fast as possible) RTDs. The EEG signals were classified using feature extraction based on the marginal distribution of a discrete wavelet transform with optimization of the mother wavelet.

View Article and Find Full Text PDF

The paper presents a novel pattern recognition approach for the classification of single-trial movement-related cortical potentials (MRCPs) generated by variations of force-related parameters during voluntary tasks. The feature space was built from the coefficients of a discrete dyadic wavelet transformation. Mother wavelet parameterization allowed the tuning of basis functions to project the signals.

View Article and Find Full Text PDF

This paper summarizes the brain-computer interface (BCI)-related research being conducted at Aalborg University. Namely, an online synchronized BCI system using steady-state visual evoked potentials, and investigations on cortical modulation of movement-related parameters are presented.

View Article and Find Full Text PDF

This paper describes the highlights of presentations and discussions during the Third International BCI Meeting in a workshop that evaluated potential brain-computer interface (BCI) signals and currently available recording methods. It defined the main potential user populations and their needs, addressed the relative advantages and disadvantages of noninvasive and implanted (i.e.

View Article and Find Full Text PDF

The aim of this study was to investigate the contribution of proprioceptive feedback to the amplitude modulation of the soleus muscle activity during human walking. We have previously shown that slow-velocity, small-amplitude ankle dorsiflexion enhancements and reductions applied during the stance phase of the step cycle generate, respectively, increments and decrements on the ongoing soleus activity. We have also shown that the increments in soleus activity are at least partially mediated by feedback from group Ia fibres.

View Article and Find Full Text PDF

A multitude of studies have demonstrated a clear activation of the motor cortex during imagination of various motor tasks; however, it is still unclear if movement-related parameters (movement direction, range of motion, speed, force level and rate of force development) specifically modulate cortical activation as they do during the execution of actual motor tasks. Accordingly, this study examined whether the rate of torque development (RTD) and/or the torque amplitude modulates cortical potentials generated during imaginary motor tasks. Fifteen subjects imagined four different left-sided isometric plantar-flexion tasks, while EEG and EMG recordings were being performed.

View Article and Find Full Text PDF

The influence of directional orientation on movement-related potentials (MRPs) during gait initiation and stepping has been investigated in the present study, as well as possible effects caused by the distinction between gait initiation and stepping. Accordingly, electroencephalographic (EEG), electromyographic (EMG) and kinetic recordings were conducted while eight subjects initiated gait and were stepping in three different directions (namely, forward, backward and lateral). Five different movement-related potentials were extracted from the EEG recordings and statistically analyzed.

View Article and Find Full Text PDF

This study investigates whether rate of torque development (RTD) and/or torque amplitude are reflected in the movement-related potentials (MRPs) preceding and accompanying isometric activation of plantar flexor muscles. Subjects were asked to perform six different tasks involving the left ankle joint. The tasks consisted of voluntary isometric plantar flexions at three different RTDs (two fixed rates and a 'ballistic' task) ending at two different torque amplitudes.

View Article and Find Full Text PDF