Social media is becoming a source of news for many people due to its ease and freedom of use. As a result, fake news has been spreading quickly and easily regardless of its credibility, especially in the last decade. Fake news publishers take advantage of critical situations such as the Covid-19 pandemic and the American presidential elections to affect societies negatively.
View Article and Find Full Text PDFCancer is one of the most dangerous diseases to humans, and yet no permanent cure has been developed for it. Breast cancer is one of the most common cancer types. According to the National Breast Cancer Foundation, in 2020 alone, more than 276,000 new cases of invasive breast cancer and more than 48,000 non-invasive cases were diagnosed in the US.
View Article and Find Full Text PDFQuanta Image Sensor (QIS) is a single-photon detector designed for extremely low light imaging conditions. Majority of the existing QIS prototypes are monochrome based on single-photon avalanche diodes (SPAD). Passive color imaging has not been demonstrated with single-photon detectors due to the intrinsic difficulty of shrinking the pixel size and increasing the spatial resolution while maintaining acceptable intra-pixel cross-talk.
View Article and Find Full Text PDFGiven a set of image denoisers, each having a different denoising capability, is there a provably optimal way of combining these denoisers to produce an overall better result? An answer to this question is fundamental to designing an ensemble of weak estimators for complex scenes. In this paper, we present an optimal combination scheme by leveraging the deep neural networks and the convex optimization. The proposed framework, called the Consensus Neural Network (CsNet), introduces three new concepts in image denoising: 1) a provably optimal procedure to combine the denoised outputs via convex optimization; 2) a deep neural network to estimate the mean squared error (MSE) of denoised images without needing the ground truths; and 3) an image boosting procedure using a deep neural network to improve the contrast and to recover the lost details of the combined images.
View Article and Find Full Text PDFSensors (Basel)
November 2016
A quanta image sensor (QIS) is a class of single-photon imaging devices that measure light intensity using oversampled binary observations. Because of the stochastic nature of the photon arrivals, data acquired by QIS is a massive stream of random binary bits. The goal of image reconstruction is to recover the underlying image from these bits.
View Article and Find Full Text PDF