Publications by authors named "Omar Bafakeeh"

The bioconvective flow of non-Newtonian fluid induced by a stretched surface under the aspects of combined magnetic and porous medium effects is the main focus of the current investigation. Unlike traditional aspects, here the viscoelastic behavior has been examined by a combination of both micropolar and second grade fluid. Further thermophoresis, Brownian motion and thermodiffusion aspects, along with variable thermal conductivity, have also been utilized for the boundary process.

View Article and Find Full Text PDF

The radiated flow of magnetized viscous fluid subject to the viscous dissipation phenomenon is numerically studied. The radiative phenomenon is addressed with nonlinear relations. Further, analysis is performed by using the slip effects and convective thermal flow constraints.

View Article and Find Full Text PDF

Chirps are familiar in nature, have a built-in resistance to noise and interference, and are connected to a wide range of highly oscillatory processes. Detecting chirp oscillating patterns by traditional Fourier series is challenging because the chirp frequencies constantly change over time. Estimating such types of functions considering the partial sums of a Fourier series in Fourier analysis does not permit an approximate solution, which entails more Fourier coefficients required for signal reconstruction.

View Article and Find Full Text PDF

The intention of this study is to carry out a numerical investigation of time-dependent magneto-hydro-dynamics (MHD) Eyring-Powell liquid by taking a moving/static wedge with Darcy-Forchheimer relation. Thermal radiation was taken into account for upcoming solar radiation, and the idea of bioconvection is also considered for regulating the unsystematic exertion of floating nanoparticles. The novel idea of this work was to stabilized nanoparticles through the bioconvection phenomena.

View Article and Find Full Text PDF

Following to improved thermal impact of hybrid nanomaterials, wide range applications of such materials is observed in the thermal engineering, extrusion systems, solar energy, power generation, heat transfer devices etc. The hybrid nanofluid is a modified form of nanofluid which is beneficial for improving energy transfer efficiency. In current analysis, the solid nanoparticles aluminium ([Formula: see text]) and copper ([Formula: see text]) have been mixed with water to produce a new hybrid nanofluid.

View Article and Find Full Text PDF

In this article, a Riga plate is exhibited with an electric magnetization actuator consisting of permanent magnets and electrodes assembled alternatively. This Riga plate creates an electric and magnetic field, where a transverse Lorentz force is generated that contributes to the flow along the plate. A new study field has been created by Sutterby nanofluid flows down the Riga plate, which is crucial to the creation of several industrial advancements, including thermal nuclear reactors, flow metres, and nuclear reactor design.

View Article and Find Full Text PDF

A variety of methodologies have been used to explore heat transport enhancement, and the fin approach to inspect heat transfer characteristics is one such effective method. In a broad range of industrial applications, including heat exchangers and microchannel heat sinks, fins are often employed to improve heat transfer. Encouraged by this feature, the present research is concerned with the temperature distribution caused by convective and radiative mechanisms in an internal heat-generating porous longitudinal dovetail fin (DF).

View Article and Find Full Text PDF

The growing applications of iron/copper bimetallic composites in various industries are increasing. The relationship between the properties of these materials and manufacturing parameters should be well understood. This paper represents an experimental study to evaluate the effect of reinforcement (steel rod) preheating temperature on the mechanical properties (bond strength, microhardness, and wear resistance) of copper matrix composites (QMMC).

View Article and Find Full Text PDF

The multiscale hybridization of ceramic nanoparticles incorporated into polymer matrices reinforced with hybrid fibers offers a new opportunity to develop high-performance, multifunctional composites, especially for applications in aeronautical structures. In this study, two different kinds of hybrid fibers were selected, woven carbon and glass fiber, while two different ceramic nanoparticles, alumina (AlO) and graphene nanoplatelets (GNPs), were chosen to incorporate into a polymer matrix (epoxy resin). To obtain good dispersion of additive nanoparticles within the resin matrix, the ultrasonication technique was implemented.

View Article and Find Full Text PDF