Publications by authors named "Omar Alajarmeh"

Pultrusion is a high-volume manufacturing process for Fibre-Reinforced Polymer (FRP) composites. It requires careful tuning and optimisation of process parameters to obtain the maximum production rate. The present work focuses on the correlation between the set die temperatures of 80 °C, 100 °C, 120 °C, and 140 °C and the resin cure state at constant pull speeds.

View Article and Find Full Text PDF

Interest in the use of natural fibres as an alternative for artificial fibres in polymer composite manufacturing is increasing for various engineering applications. Their suitability for use in outdoor environments should be demonstrated due to their perceived hydrophilic behaviour. This study investigated the water absorption behaviour of hybrid flax fibre-reinforced epoxy composites with 0%, 0.

View Article and Find Full Text PDF

Natural fibers are now becoming widely adopted as reinforcements for polymer matrices to produce biodegradable and renewable composites. These natural composites have mechanical properties acceptable for use in many industrial and structural applications under ambient temperatures. However, there is still limited understanding regarding the mechanical performance of natural fiber composites when exposed to in-service elevated temperatures.

View Article and Find Full Text PDF

Hollow box pultruded fibre-reinforced polymers (PFRP) profiles are increasingly used as structural elements in many structural applications due to their cost-effective manufacturing process, excellent mechanical properties-to-weight ratios, and superior corrosion resistance. Despite the extensive usage of PFRP profiles, there is still a lack of knowledge in the design for manufacturing against local buckling on the structural level. In this review, the local buckling of open-section (I, C, Z, L, T shapes) and closed-section (box) FRP structural shapes was systematically compared.

View Article and Find Full Text PDF

Adding fibers to concrete helps enhance its tensile strength and ductility. Synthetic fibres are preferable to steel ones which suffer from corrosion that reduces their functionality with time. More consideration is given to synthetic fibres as they can be sourced from waste plastics and their incorporation in concrete is considered a new recycling pathway.

View Article and Find Full Text PDF

Sand contaminated with crude oil is becoming a major environmental issue around the world, while at the same time, fly ash generated by coal-fired power stations is having a detrimental effect on the environment. Previous studies showed that combining these two waste materials can result in an environmentally sustainable geopolymer concrete. Incorporating sand contaminated with crude oil up to a certain level (4% by weight) can improve the mechanical properties of the produced geopolymer concrete but beyond this level can have a detrimental effect on its compressive strength.

View Article and Find Full Text PDF

An innovative beam concept made from hollow FRP tube with external flanges and filled with crumbed rubber concrete was investigated with respect to bending and shear. The performance of the rubberised-concrete-filled specimens was then compared with hollow and normal-concrete-filled tubes. A comparison between flanged and non-flanged hollow and concrete-filled tubes was also implemented.

View Article and Find Full Text PDF