A condensation reaction of salicylic acid with formaldehyde in the presence of sulfuric acid led to the synthesization of the bis(2-hydroxy-3-carboxyphenyl)methane (BHCM) ligand, which was subsequently allowed to bind with nickel (II) ions. In light of the information obtained from the elemental analyses (C, H, and M), spectral (IR, MS, H-NMR, and UV-Vis) and thermal and magnetic measurements, the most likely structures of the ligand and complex have been identified. It has been suggested that the BHCM coordinates in a tetradentate manner with two Ni(II) ions to produce an octahedral binuclear complex.
View Article and Find Full Text PDFNeurosurgery
January 2024
Artificial implants are very essential for the disabled as they are utilized for bone and joint function in orthopedics. However, materials used in such implants suffer from restricted mechanical and tribological properties besides the difficulty of using such materials with complex structures. The current study works on developing a new polymer green composite that can be used for artificial implants and allow design flexibility through its usage with 3D printing technology.
View Article and Find Full Text PDFCovalent and non-covalent nanofluids were tested inside a circular tube fitted with twisted tape inserts with 45° and 90° helix angles. Reynolds number was 7000 ≤ Re ≤ 17,000, and thermophysical properties were assessed at 308 K. The physical model was solved numerically via a two-equation eddy-viscosity model (SST k-omega turbulence).
View Article and Find Full Text PDFNumerical studies were performed to estimate the heat transfer and hydrodynamic properties of a forced convection turbulent flow using three-dimensional horizontal concentric annuli. This paper applied the standard k-ε turbulence model for the flow range 1 × 10 ≤ Re ≥ 24 × 10. A wide range of parameters like different nanomaterials (AlO, CuO, SiO and ZnO), different particle nanoshapes (spherical, cylindrical, blades, platelets and bricks), different heat flux ratio (HFR) (0, 0.
View Article and Find Full Text PDFCovalent functionalization (CF-GNPs) and non-covalent functionalization (NCF-GNPs) approaches were applied to prepare graphene nanoplatelets (GNPs). The impact of using four surfactants (SDS, CTAB, Tween-80, and Triton X-100) was studied with four test times (15, 30, 60, and 90 min) and four weight concentrations. The stable thermal conductivity and viscosity were measured as a function of temperature.
View Article and Find Full Text PDF