Mater Sci Eng C Mater Biol Appl
January 2021
Development of a biomimetic tubular scaffold capable of recreating developmental neurogenesis using pluripotent stem cells offers a novel strategy for the repair of spinal cord tissues. Recent advances in 3D printing technology have facilitated biofabrication of complex biomimetic environments by precisely controlling the 3D arrangement of various acellular and cellular components (biomaterials, cells and growth factors). Here, we present a 3D printing method to fabricate a complex, patterned and embryoid body (EB)-laden tubular scaffold composed of polycaprolactone (PCL) and hydrogel (alginate or gelatine methacrylate (GelMA)).
View Article and Find Full Text PDFPolymer microparticles are widely used as acellular drug delivery platforms in regenerative medicine, and have emerging potential as cellular scaffolds for therapeutic cell delivery. In the clinic, PLGA microparticles are typically administered intramuscularly or subcutaneously, with the clinician and clinical application site determining the precise needle gauge used for delivery. Here, we explored the role of needle diameter in microparticle delivery yield, and develop a modified viscosity formulation to improve microparticle delivery across a range of clinically relevant needle diameters.
View Article and Find Full Text PDF