Publications by authors named "Omair Ghafur"

Photoelectron angular distributions (PADs) produced from the photoionization of chiral molecules using elliptically polarized light exhibit a forward/backward asymmetry with respect to the optical propagation direction. By recording these distributions using the velocity-map imaging (VMI) technique, the resulting photoelectron elliptical dichroism (PEELD) has previously been demonstrated as a promising spectroscopic tool for studying chiral molecules in the gas phase. The use of elliptically polarized laser pulses, however, produces PADs (and consequently, PEELD distributions) that do not exhibit cylindrical symmetry about the propagation axis.

View Article and Find Full Text PDF

We present an initial demonstration of a velocity-map imaging (VMI) experiment using a back-irradiation laser-based desorption source directly integrated into the electrode assembly. This has the potential to greatly expand the utility of the popular VMI approach by permitting its use with high density plumes of non-volatile molecular samples. Photoelectron circular dichroism measurements on the phenylalanine molecule using 400 nm multiphoton ionization are used to illustrate this novel method, revealing forward-backward emission asymmetries on the order of 7%.

View Article and Find Full Text PDF

We report the first excited state dynamics study of gas-phase 5,6-dihydroxyindole (5,6-DHI), a key building block of eumelanin pigments that are found throughout nature and serve as important photo-protective compounds. Time-resolved ion-yield measurements over the 241-296 nm ultraviolet photoexcitation region revealed non-adiabatic processes occurring on up to three distinct timescales. These reflect ultrafast (i.

View Article and Find Full Text PDF

Wavelength-dependent measurements of the RNA base uracil, undertaken with nanosecond ultraviolet laser pulses, have previously identified a fragment at m/z = 84 (corresponding to the CHNO ion) at excitation wavelengths ≤232 nm. This has been interpreted as a possible signature of a theoretically predicted ultrafast ring-opening occurring on a neutral excited state potential energy surface. To further investigate the dynamics of this mechanism, and also the non-adiabatic dynamics operating more generally in uracil, we have used a newly built ultra-high vacuum spectrometer incorporating a laser-based thermal desorption source to perform time-resolved ion-yield measurements at pump wavelengths of 267 nm, 220 nm, and 200 nm.

View Article and Find Full Text PDF

We report time-resolved photoelectron imaging studies of gas-phase pyrrole over the 267-240 nm excitation region, recorded in conjunction with a 300 nm probe. Of specific interest is the lowest-lying (3s/πσ) state, which exhibits very weak oscillator strength but is thought to be excited directly at wavelengths ≤254 nm. We conclude, however, that the only significant contribution to our photoelectron data at all wavelengths investigated is from non-resonant ionization.

View Article and Find Full Text PDF

The ultrafast photo-physical properties of DNA are crucial in providing a stable basis for life. Although the DNA bases efficiently absorb ultraviolet (UV) radiation, this energy can be dissipated to the surrounding environment by the rapid conversion of electronic energy to vibrational energy within about a picosecond. The intrinsic nature of this internal conversion process has previously been demonstrated through gas phase experiments on the bases, supported by theoretical calculations.

View Article and Find Full Text PDF