Extracellular matrix-based bio-scaffolds are useful for tissue engineering as they retain the unique structural, mechanical, and physiological microenvironment of the tissue thus facilitating cellular attachment and matrix activities. However, considering its potential, a comprehensive understanding of the protein profile remains elusive. Herein, we evaluate the impact of decellularization on the human amniotic membrane (hAM) based on its proteome profile, physicochemical features, as well as the attachment, viability, and proliferation of umbilical cord-derived mesenchymal stem cells (hUC-MSC).
View Article and Find Full Text PDFObjectives: To determine the effect of the pre-treatment of mesenchymal stem cells (MSCs) with minocycline on the expression of antioxidant genes and cardiac repair post myocardial infarction (MI) in rats.
Methods: Rat bone marrow derived MSCs were used in the study. Cytotoxicity of minocycline in MSCs was determined using JC1 assay to identify a safe drug dose for further experiments.
Tissue engineering is a promising approach for the repair and regeneration of cartilaginous tissue. Appropriate three-dimensional scaffolding materials that mimic cartilage are ideal for the repair of chondral defects. The emerging decellularized tissue-based scaffolds have the potential to provide essential biochemical signals and structural integrity, which mimics the natural tissue environment and directs cellular fate.
View Article and Find Full Text PDF