In many instances, one or more components of a pharmaceutical or cosmetic formulation is an oil. The aims of this study were two-fold. First, to examine the potential of preferential uptake of one oily vehicle component over another into a model barrier membrane (silicone) from blended vehicles (comprising two from the common excipients isohexadecane (IHD), hexadecane (HD), isopropyl myristate (IPM), oleic acid (OA) and liquid paraffin).
View Article and Find Full Text PDFThere has been considerable recent interest in employing computer models to investigate the relationship between the structure of a molecule and its dermal penetration. Molecular permeation across the epidermis has previously been demonstrated to be determined by a number of physicochemical properties, for example, the lipophilicity, molecular weight and hydrogen bonding ability of the permeant. However little attention has been paid to modeling the combined effects of permeant properties in tandem with the properties of vehicles used to deliver those permeants or to whether data obtained using synthetic membranes can be correlated with those obtained using human epidermis.
View Article and Find Full Text PDFThe diffusion process through a non-porous barrier membrane depends on the properties of the drug, vehicle and membrane. The aim of the current study was to investigate whether a series of oily vehicles might have the potential to interact to varying degrees with synthetic membranes and to determine whether any such interaction might affect the permeation of co-formulated permeants: methylparaben (MP); butylparaben (BP) or caffeine (CF). The oils (isopropyl myristate (IPM), isohexadecane (IHD), hexadecane (HD), oleic acid (OA) and liquid paraffin (LP)) and membranes (silicone, high density polyethylene and polyurethane) employed in the study were selected such that they displayed a range of different structural, and physicochemical properties.
View Article and Find Full Text PDF