Publications by authors named "Olympia E Psathaki"

Correlative light and electron microscopy (CLEM) combines light microscopy (LM) of fluorescent samples to ultrastructural analyses by electron microscopy (EM). Pre-embedding CLEM often suffers from inaccurate correlation between LM and EM modalities. Post-embedding CLEM enables precise registration of structures directly on EM sections, but requires fluorescent markers withstanding EM sample preparation, especially osmium tetroxide fixation, dehydration and EPON embedding.

View Article and Find Full Text PDF

The infection course of Mycobacterium tuberculosis is highly dynamic and comprises sequential stages that require damaging and crossing of several membranes to enable the translocation of the bacteria into the cytosol or their escape from the host. Many important breakthroughs such as the restriction of mycobacteria by the autophagy pathway and the recruitment of sophisticated host repair machineries to the Mycobacterium-containing vacuole have been gained in the Dictyostelium discoideum/M. marinum system.

View Article and Find Full Text PDF

Ohmic heating (OH) is an alternative sustainable heating technology that has demonstrated its potential to modify protein structures and aggregates. Furthermore, certain protein aggregates, namely amyloid fibrils (AF), are associated with an enhanced protein functionality, such as gelation. This study evaluates how Ohmic heating (OH) influences the formation of AF structures from ovalbumin source under two electric field strength levels, 8.

View Article and Find Full Text PDF

In vitro culture systems that structurally model human myogenesis and promote PAX7 myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation.

View Article and Find Full Text PDF

The orchestrated activity of the mitochondrial respiratory or electron transport chain (ETC) and ATP synthase convert reduction power (NADH, FADH) into ATP, the cell's energy currency in a process named oxidative phosphorylation (OXPHOS). Three out of the four ETC complexes are found in supramolecular assemblies: complex I, III, and IV form the respiratory supercomplexes (SC). The plasticity model suggests that SC formation is a form of adaptation to changing conditions such as energy supply, redox state, and stress.

View Article and Find Full Text PDF

The plasma membrane of a cell is subject to stresses causing ruptures that must be repaired immediately to preserve membrane integrity and ensure cell survival. Yet, the spatio-temporal membrane dynamics at the wound site and the source of the membrane required for wound repair are poorly understood. Here, it is shown that early endosomes, previously only known to function in the uptake of extracellular material and its endocytic transport, are involved in plasma membrane repair in human endothelial cells.

View Article and Find Full Text PDF

The facultative intracellular pathogen Salmonella enterica remodels the host endosomal system for survival and proliferation inside host cells. Salmonella resides within the Salmonella-containing vacuole (SCV) and by Salmonella-induced fusions of host endomembranes, the SCV is connected with extensive tubular structures termed Salmonella-induced filaments (SIF). The intracellular lifestyle of Salmonella critically depends on effector proteins translocated into host cells.

View Article and Find Full Text PDF

Dysfunction of the aging heart is a major cause of death in the human population. Amongst other tasks, mitochondria are pivotal to supply the working heart with ATP. The mitochondrial inner membrane (IMM) ultrastructure is tailored to meet these demands and to provide nano-compartments for specific tasks.

View Article and Find Full Text PDF

is a common zoonotic protozoan pathogen adapted to intracellular parasitism in many host cells of diverse organisms. Our previous work has identified 18 cyclic nucleotide phosphodiesterase (PDE) proteins encoded by the parasite genome, of which 11 are expressed during the lytic cycle of its acutely-infectious tachyzoite stage in human cells. Here, we show that ten of these enzymes are promiscuous dual-specific phosphodiesterases, hydrolyzing cAMP and cGMP.

View Article and Find Full Text PDF

While many proteins are known clients of heat shock protein 90 (Hsp90), it is unclear whether the transcription factor, thyroid hormone receptor beta (TRb), interacts with Hsp90 to control hormonal perception and signaling. Higher Hsp90 expression in mouse fibroblasts was elicited by the addition of triiodothyronine (T3). T3 bound to Hsp90 and enhanced adenosine triphosphate (ATP) binding of Hsp90 due to a specific binding site for T3, as identified by molecular docking experiments.

View Article and Find Full Text PDF

This work aimed at the development of a stable albumin-perfluorocarbon (o/w) emulsion as an artificial oxygen carrier suitable for clinical application. So far, albumin-perfluorocarbon-(o/w) emulsions have been successfully applied in preclinical trials. Cross-linking a variety of different physical and chemical methods for the characterization of an albumin-perfluorocarbon (PFC)-(o/w) emulsion was necessary to gain a deep understanding of its specific emulsification processes during high-pressure homogenization.

View Article and Find Full Text PDF

The nanometer spatial resolution of electron microscopy imaging remains an advantage over light microscopy, but the restricted field of view that can be inspected and the inability to visualize dynamic cellular events are definitely drawbacks of standard transmission electron microscopy (TEM). Several methods have been developed to overcome these limitations, mainly by correlating the light microscopical image to the electron microscope with correlative light and electron microscopy (CLEM) techniques. Since there is more than one method to obtain the region of interest (ROI), the workflow must be adjusted according to the research question and biological material addressed.

View Article and Find Full Text PDF

Platelets preserve vascular integrity during immune complex‒mediated skin inflammation by preventing neutrophil-provoked hemorrhage. However, the single-cell dynamics of this hemostatic process have never been studied in real-time. To monitor the onset of thrombocytopenia-associated hemorrhages and analyze platelet recruitment, we developed a confocal microscopy‒based video-imaging platform for the dorsal skinfold chamber in living mice.

View Article and Find Full Text PDF

Several studies have pointed to retinal involvement in COVID-19, yet many questions remain regarding the ability of SARS-CoV-2 to infect and replicate in retinal cells and its effects on the retina. Here, we have used human pluripotent stem cell-derived retinal organoids to study retinal infection by SARS-CoV-2. Indeed, SARS-CoV-2 can infect and replicate in retinal organoids, as it is shown to infect different retinal lineages, such as retinal ganglion cells and photoreceptors.

View Article and Find Full Text PDF

Ischemic heart disease and by extension myocardial infarction is the primary cause of death worldwide, warranting regenerative therapies to restore heart function. Current models of natural heart regeneration are restricted in that they are not of adult mammalian origin, precluding the study of class-specific traits that have emerged throughout evolution, and reducing translatability of research findings to humans. Here, we present the spiny mouse (Acomys spp.

View Article and Find Full Text PDF

Label-free optical detection of biomolecules is currently limited by a lack of specificity rather than sensitivity. To exploit the much more characteristic refractive index dispersion in the mid-infrared (IR) regime, we have engineered three-dimensional IR-resonant silicon micropillar arrays (Si-MPAs) for protein sensing. By exploiting the unique hierarchical nano- and microstructured design of these Si-MPAs attained by CMOS-compatible silicon-based microfabrication processes, we achieved an optimized interrogation of surface protein binding.

View Article and Find Full Text PDF

• Mitochondrial FF ATP synthase is the key enzyme for mitochondrial bioenergetics. Dimeric FF-ATP synthase, is preferentially located at the edges of the cristae and its oligomerization state determines mitochondrial ultrastructure. The ATP synthase inhibitor protein IF1 modulates not only ATP synthase activity but also regulates both the structure and function of mitochondria.

View Article and Find Full Text PDF

Endosome biogenesis in eukaryotic cells is critical for nutrient uptake and plasma membrane integrity. Early endosomes initially contain Rab5, which is replaced by Rab7 on late endosomes prior to their fusion with lysosomes. Recruitment of Rab7 to endosomes requires the Mon1-Ccz1 guanine-nucleotide-exchange factor (GEF).

View Article and Find Full Text PDF

FF ATP synthase, also known as complex V, is a key enzyme of mitochondrial energy metabolism that can synthesize and hydrolyze ATP. It is not known whether the ATP synthase and ATPase function are correlated with a different spatio-temporal organisation of the enzyme. In order to analyze this, we tracked and localized single ATP synthase molecules in situ using live cell microscopy.

View Article and Find Full Text PDF

Early mouse embryos have an atypical translational machinery that consists of cytoplasmic lattices and is poorly competent for translation. Hence, the impact of transcriptomic changes on the operational level of proteins is predicted to be relatively modest. To investigate this, we performed liquid chromatography-tandem mass spectrometry and mRNA sequencing at seven developmental stages, from the mature oocyte to the blastocyst, and independently validated our data by immunofluorescence and qPCR.

View Article and Find Full Text PDF

Synthetically replicating key biological processes requires the ability to puncture lipid bilayer membranes and to remodel their shape. Recently developed artificial DNA nanopores are one possible synthetic route due to their ease of fabrication. However, an unresolved fundamental question is how DNA nanopores bind to and dynamically interact with lipid bilayers.

View Article and Find Full Text PDF
Article Synopsis
  • Sphingolipidoses are inherited lysosomal storage diseases characterized by the accumulation of undigested materials in lysosomes due to defects in degradation mechanisms, often leading to neurodegeneration and short life expectancy.
  • Some sphingolipidoses are associated with mutations in prosaposin, which is crucial for lipid digestion in lysosomes; this can lead to severe disease forms and challenges in studying their progression in animal models.
  • Research using mutations in the prosaposin orthologue in flies reveals a model for sphingolipidosis, demonstrating characteristics like enlarged endolysosomal compartments, lipid accumulation, neurodegeneration, and altered sterol homeostasis, while also providing insights into age-related lysosomal dysfunction.
View Article and Find Full Text PDF

harbours a simple tubular heart that ensures haemolymph circulation within the body. The heart is built by a few different cell types, including cardiomyocytes that define the luminal heart channel and ostia cells that constitute openings in the heart wall allowing haemolymph to enter the heart chamber. Regulation of flow directionality within a tube, such as blood flow in arteries or insect haemolymph within the heart lumen, requires a dedicated gate, valve or flap-like structure that prevents backflow of fluids.

View Article and Find Full Text PDF

Reprogramming technology enables the production of neural progenitor cells (NPCs) from somatic cells by direct transdifferentiation. However, little is known on how neural programs in these induced neural stem cells (iNSCs) differ from those of alternative stem cell populations in vitro and in vivo. Here, we performed transcriptome analyses on murine iNSCs in comparison to brain-derived neural stem cells (NSCs) and pluripotent stem cell-derived NPCs, which revealed distinct global, neural, metabolic and cell cycle-associated marks in these populations.

View Article and Find Full Text PDF

Frontotemporal dementia (FTD) is a frequent form of early-onset dementia and can be caused by mutations in MAPT encoding the microtubule-associated protein TAU. Because of limited availability of neural cells from patients' brains, the underlying mechanisms of neurodegeneration in FTD are poorly understood. Here, we derived induced pluripotent stem cells (iPSCs) from individuals with FTD-associated MAPT mutations and differentiated them into mature neurons.

View Article and Find Full Text PDF