Publications by authors named "Olviyani Nasution"

PMA1 encodes a transmembrane polypeptide that functions to pump protons out of the cell. Ectopic PMA1 overexpression in Saccharomyces cerevisiae enhances tolerance to weak acids, reactive oxygen species (ROS) and ethanol, and changes the following physiological properties: better proton efflux, lower membrane permeability, and lessened internal hydrogen peroxide production. The enhanced stress tolerance was dependent on the mitogen-activated protein kinase (MAPK) Hog1 of the high osmolarity glycerol (HOG) pathway, but not the MAPK Slt2 of the cell wall integrity (CWI) pathway; however, a PMA1 overexpression constitutively activated both Hog1 and Slt2.

View Article and Find Full Text PDF

OLE1 of Saccharomyces cerevisiae encodes the sole and essential Δ-9 desaturase catalyzing the conversion of saturated to unsaturated fatty acids. Upon ectopic overexpression of OLE1 in S. cerevisiae, significant increases in the membrane oleic acid content were observed.

View Article and Find Full Text PDF

Acetic acid inhibits the metabolic activities of Saccharomyces cerevisiae. Therefore, a better understanding of how S. cerevisiae cells acquire the tolerance to acetic acid is of importance to develop robust yeast strains to be used in industry.

View Article and Find Full Text PDF

The protein product of Saccharomyces cerevisiae DFG5 gene is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein and a putative glycosidase/glycosyltransferase that links other GPI-anchored proteins to β-glucans in the cell wall. Upon exposure to heat (41°C), DFG5 deletion mutant dfg5Δ displayed significantly enhanced heat tolerance as well as lowered level of reactive oxygen species and decreased membrane permeability compared with those in the control (BY4741). Comparative transcriptome profiles of BY4741 and dfg5Δ revealed that 38 and 23 genes were up- and down-regulated in dfg5Δ respectively.

View Article and Find Full Text PDF

In this study, we demonstrate that hyphal differentiation is induced by the subtoxic concentration of exogenous H(2)O(2) in Candida albicans. This finding is confirmed by the changing intracellular concentration of H(2)O(2). In order to induce the same level of differentiation, low concentrations of exogenous H(2)O(2) are required for the null mutants of the thiol-specific antioxidant and catalase, while higher concentrations are needed for cells treated with ascorbic acid, an antioxidant chemical.

View Article and Find Full Text PDF