Publications by authors named "Olver R"

Herbicide use is widespread in agricultural production to control weeds prior to and after planting and to "burndown" weeds in the spring for conservation tillage. Whether conservation tillage adoption leads to higher herbicide usage has been a question of policy relevance for decades in the United States. Older U.

View Article and Find Full Text PDF

Due to concerns surrounding its ozone depletion potential, there is a need for technologies to capture and destroy methyl bromide (CHBr) emissions from postharvest fumigations applied to control agricultural pests. Previously, we described a system in which CHBr fumes vented from fumigation chambers could be captured by granular activated carbon (GAC). The GAC was converted to a cathode by submergence in a high ionic strength solution and connection to the electrical grid, resulting in reductive debromination of the sorbed CHBr.

View Article and Find Full Text PDF

Use of social media by doctors and medical students is common and growing. Although professional standards and codes of ethics that govern the behaviour of medical practitioners in Australia and New Zealand do not currently encompass social media, these codes need to evolve, because professional standards continue to apply in this setting. Inappropriate use of social media can result in harm to patients and the profession, including breaches of confidentiality, defamation of colleagues or employers, and violation of doctor-patient boundaries.

View Article and Find Full Text PDF

Influenza A viruses cause lung disease via an incompletely understood mechanism that involves the accumulation of liquid within the lungs. The accumulation of lung liquid is normally prevented by epithelial Na(+) absorption, a transport process regulated via several pathways including phosphoinositide-3-kinase (PI3K). Since the influenza A virus encodes a non-structural protein (NS1) that can activate this kinase, we now explore the effects of NS1 upon the biophysical properties of human airway epithelial cells.

View Article and Find Full Text PDF

Analysis of membrane currents recorded from hormone-deprived H441 cells showed that the membrane potential (V(m)) in single cells (approximately -80 mV) was unaffected by lowering [Na+]o or [Cl(-)]o, indicating that cellular Na+ and Cl(-) conductances (GNa and GCl, respectively) are negligible. Although insulin (20 nM, approximately 24 h) and dexamethasone (0.2 microM, approximately 24 h) both depolarized Vm by approximately 20 mV, the response to insulin reflected a rise in GCl mediated via phosphatidylinositol 3-kinase (PI3K) whereas dexamethasone acted by inducing a serum- and glucocorticoid-regulated kinase 1 (SGK1)-dependent rise in GNa.

View Article and Find Full Text PDF

In the fetus, there is a net secretion of liquid (LL) by the lung as a result of active transport of chloride ions. The rate of secretion and the resulting volume of LL are vital for normal lung growth but how volume is sensed and how secretion may be regulated are still unknown. Towards term under the influence of thyroid and adrenocorticoid hormones, the epithelial sodium channel (ENaC) is increasingly expressed in the pulmonary epithelium.

View Article and Find Full Text PDF

By analysis of whole cell membrane currents in Na(+)-absorbing H441 human airway epithelial cells, we have identified a K(+) conductance (G(K)) resistant to Ba(2+) but sensitive to bupivacaine or extracellular acidification. In polarized H441 monolayers, we have demonstrated that bupivacaine, lidocaine, and quinidine inhibit basolateral membrane K(+) current (I(Bl)) whereas Ba(2+) has only a weak inhibitory effect. I(Bl) was also inhibited by basolateral acidification, and, although subsequent addition of bupivacaine caused a further fall in I(Bl), acidification had no effect after bupivacaine, demonstrating that cells grown under these conditions express at least two different bupivacaine-sensitive K(+) channels, only one of which is acid sensitive.

View Article and Find Full Text PDF

Academic paediatrics is an exciting and rewarding career path but is not immune to the problems of recruitment and retention currently affecting most branches of medicine. The Modernising Medical Careers initiative, with its explicit academic training path, offers an unparalleled opportunity to develop novel schemes that promote recruitment and retention. Coordinated action is required to define, publicise and support the new academic training programmes and to attract the best trainees into them.

View Article and Find Full Text PDF

Background And Purpose: Absorptive epithelia express apical receptors that allow nucleotides to inhibit Na(+) transport but ATP unexpectedly stimulated this process in an absorptive cell line derived from human bronchiolar epithelium (H441 cells) whilst UTP consistently caused inhibition. We have therefore examined the pharmacological basis of this anomalous effect of ATP.

Experimental Approach: H441 cells were grown on membranes and the short circuit current (I(SC)) measured in Ussing chambers.

View Article and Find Full Text PDF

Electrophysiological studies of H441 human distal airway epithelial cells showed that thapsigargin caused a Ca(2+)-dependent increase in membrane conductance (G(Tot)) and hyperpolarization of membrane potential (V(m)). These effects reflected a rapid rise in cellular K(+) conductance (G(K)) and a slow fall in amiloride-sensitive Na(+) conductance (G(Na)). The increase in G(Tot) was antagonized by Ba(2+), a nonselective K(+) channel blocker, and abolished by clotrimazole, a KCNN4 inhibitor, but unaffected by other selective K(+) channel blockers.

View Article and Find Full Text PDF

Background: The state of academic paediatrics in the United Kingdom is a source of anxiety in view of anecdotal reports of loss of identity within medical schools and reductions in staffing levels.

Aims: To measure the current numbers and recent changes in clinical academic staff in all university departments of paediatrics in the UK.

Methods: A questionnaire was sent to all 24 university departments of paediatrics where undergraduates are taught, and to the postgraduate institute of paediatrics.

View Article and Find Full Text PDF

We determined the effects of sustained and cyclical prenatal mechanical strain on the hypoplastic lung of the ovine model of congenital diaphragmatic hernia. Over a period of 4 weeks in late gestation, repeated cyclical tracheal occlusion for 23 hours with 1-hour release stimulated minimal growth, but promoted maturation with the development of a saccular lung. In contrast, a cycle consisting of 47 hours with 1-hour release induced optimal lung growth and morphologic maturation of the hypoplastic lung parenchyma.

View Article and Find Full Text PDF

Treating H441 cells with dexamethasone raised the abundance of mRNA encoding the epithelial Na(+) channel alpha- and beta-subunits and increased transepithelial ion transport (measured as short-circuit current, I(sc)) from <4 microA.cm(-2) to 10-20 microA.cm(-2).

View Article and Find Full Text PDF

The developing distal lung epithelium displays an evolving liquid transport phenotype, reflecting a changing and dynamic balance between Cl- ion secretion and Na+ ion absorption, which in turn reflects changing functional requirements. Thus in the fetus, Cl--driven liquid secretion predominates throughout gestation and generates a distending pressure to stretch the lung and stimulate growth. Increasing Na+ absorptive capacity develops toward term, anticipating the switch to an absorptive phenotype at birth and beyond.

View Article and Find Full Text PDF

In fetal pneumocytes, increasing P(O(2)) can raise apical Na(+) conductance (G(Na(+))) and increase the abundance of epithelial Na(+) channel subunit (alpha-, beta-, and gamma-ENaC) mRNA, suggesting that the rise in G(Na(+)), which may be important to the perinatal maturation of the lung, reflects O(2)-evoked ENaC gene expression. However, we now show that physiologically relevant increases in P(O(2)) do not affect alpha-, beta-, and gamma-ENaC mRNA abundance in pneumocytes maintained (approximately 48 h) in hormone-free medium or in medium supplemented with dexamethasone and tri-iodothyronine, although the response does persist in cells maintained in medium containing a complex mixture of hormones/growth factors. However, parallel electrometric studies revealed clear increases in G(Na(+)) under all tested conditions and so it is now clear that O(2)-evoked increases in G(Na(+)) can occur without corresponding increases in ENaC mRNA abundance.

View Article and Find Full Text PDF

Secretion of HCO(3)(-) by airway submucosal glands is essential for normal liquid and mucus secretion. Because the liquid bathing the airway surface (ASL) is acidic, it has been proposed that the surface epithelium may acidify HCO(3)(-)-rich glandular fluid. The aim of this study was to investigate the mechanisms by which intact distal bronchi, which contain both surface and glandular epithelium, modify pH of luminal fluid.

View Article and Find Full Text PDF

Isolated rat fetal distal lung epithelial (FDLE) cells were cultured (approximately 48 h) on permeable supports in medium devoid of hormones and growth factors whilst P(O2) was maintained at the level found in either the fetal (23 mmHg) or the postnatal (100 mmHg) alveolar regions. The cells became incorporated into epithelial layers that generated a basal short-circuit current (I(SC)) attributable to spontaneous Na(+) absorption. Cells at neonatal P(O2) generated larger currents than did cells at fetal P(O2), indicating that this Na(+) transport process is oxygen sensitive.

View Article and Find Full Text PDF

At birth, the distal lung epithelium undergoes a profound phenotypic switch from secretion to absorption in the course of adaptation to air breathing. In this review, we describe the developmental regulation of key membrane transport proteins and the way in which epinephrine, oxygen, glucocorticoids, and thyroid hormones interact to bring about this crucial change in function. Evidence from molecular, transgenic, cell culture, and whole lung studies is presented, and the clinical consequences of the failure of the physiological mechanisms that underlie perinatal lung liquid absorption are discussed.

View Article and Find Full Text PDF

Distal lung epithelial cells isolated from fetal rats were cultured (48 h) on permeable supports so that transepithelial ion transport could be quantified electrometrically. Unstimulated cells generated a short-circuit current (I(sc)) that was inhibited (~80%) by apical amiloride. The current is thus due, predominantly, to the absorption of Na(+) from the apical solution.

View Article and Find Full Text PDF

The Calu-3 human cell line exhibits features of submucosal gland serous cells and secretes HCO(3)(-). The aim of this study was to identify the HCO(3)(-) transporters present in these cells by studying their role in the regulation of intracellular pH (pH(i)). Calu-3 cells were grown on coverslips, loaded with the pH-sensitive fluorescent dye BCECF, and their fluorescence intensity monitored as an indication of pH(i).

View Article and Find Full Text PDF