Publications by authors named "Oluyemi Odeyemi"

Understanding molecular mechanisms underlying the complexity of allosteric regulationin proteins has attracted considerable attention in drug discovery due to the benefits and versatilityof allosteric modulators in providing desirable selectivity against protein targets while minimizingtoxicity and other side effects. The proliferation of novel computational approaches for predictingligand-protein interactions and binding using dynamic and network-centric perspectives has ledto new insights into allosteric mechanisms and facilitated computer-based discovery of allostericdrugs. Although no absolute method of experimental and allosteric drug/site discoveryexists, current methods are still being improved.

View Article and Find Full Text PDF

Development of machine learning solutions for prediction of functional and clinical significance of cancer driver genes and mutations are paramount in modern biomedical research and have gained a significant momentum in a recent decade. In this work, we integrate different machine learning approaches, including tree based methods, random forest and gradient boosted tree (GBT) classifiers along with deep convolutional neural networks (CNN) for prediction of cancer driver mutations in the genomic datasets. The feasibility of CNN in using raw nucleotide sequences for classification of cancer driver mutations was initially explored by employing label encoding, one hot encoding, and embedding to preprocess the DNA information.

View Article and Find Full Text PDF

In this study, we developed two cancer-specific machine learning classifiers for prediction of driver mutations in cancer-associated genes that were validated on canonical data sets of functionally validated mutations and applied to a large cancer genomics data set. By examining sequence, structure, and ensemble-based integrated features, we have shown that evolutionary conservation scores play a critical role in classification of cancer drivers and provide the strongest signal in the machine learning prediction. Through extensive comparative analysis with structure-functional experiments and multicenter mutational calling data from Pan Cancer Atlas studies, we have demonstrated the robustness of our models and addressed the validity of computational predictions.

View Article and Find Full Text PDF