This study assessed the toxicological and biological responses of aerosols from a novel hybrid tobacco product. Toxicological responses from the hybrid tobacco product were compared to those from a commercially available Tobacco Heating Product (c-THP), a prototype THP (p-THP) and a 3R4F reference cigarette, using in vitro test methods which were outlined as part of a framework to substantiate the risk reduction potential of novel tobacco and nicotine products. Exposure matrices used included total particulate matter (TPM), whole aerosol (WA), and aqueous aerosol extracts (AqE) obtained after machine-puffing the test products under the Health Canada Intense smoking regime.
View Article and Find Full Text PDFIn vitro cell transformation assays (CTA) are used to assess the carcinogenic potential of chemicals and complex mixtures and can detect nongenotoxic as well as genotoxic carcinogens. The Bhas 42 CTA has been developed with both initiation and promotion protocols to distinguish between these two carcinogen classes. Cigarette smoke is known to be carcinogenic and is positive in in vitro genotoxicity assays.
View Article and Find Full Text PDFTobacco smoking is a risk factor for various diseases. The underlying cellular mechanisms are not fully characterized, but include oxidative stress, apoptosis, and necrosis. Electronic-cigarettes (e-cigarettes) have emerged as an alternative to and a possible means to reduce harm from tobacco smoking.
View Article and Find Full Text PDFCarcinogenesis is a highly complex, multi-stage process that can occur over a relatively long period before its clinical manifestation. While the sequence in which a cancer cell acquires the necessary traits for tumour formation can vary, there are a number of mechanisms that are common to most, if not all, cancers across the spectrum of possible causes. Many aspects of carcinogenesis can be modelled in vitro.
View Article and Find Full Text PDFAtherosclerosis is a disease process which develops at the arterial branches and curvatures of medium to large arteries. Local haemodynamic flow patterns in these vessels play an essential role in the formation of atherosclerotic lesions. To simulate pro-atherogenic blood flow patterns, we have developed a perfusion system with the ability to simulate in vivo patterns of blood flow in vitro.
View Article and Find Full Text PDF