The vast unexplored virus biodiversity makes the application of virus templates to nanomaterial synthesis especially promising. Here, a new biotemplate, Barley stripe mosaic virus (BSMV) was successfully used to synthesize organic-metal nanorods of similarly high quality to those produced with Tobacco mosaic virus (TMV). The mineralization behavior was characterized in terms of the reduction and adsorption of precursor and nanocrystal formation processes.
View Article and Find Full Text PDFThere is a lack of fundamental information about the molecular processes governing biomineralization of inorganic materials to produce nanostructures on biological templates. This information is essential for the directed synthesis of high quality nanomaterials via biotemplating. We characterized palladium (Pd) mineralization via the individual adsorption, reduction, and nanocrystal growth processes, which simultaneously occur during the hydrothermal synthesis on the Tobacco mosaic virus (TMV).
View Article and Find Full Text PDFThe fundamental mechanisms governing reduction and growth of palladium on the genetically engineered Tobacco mosaic virus in the absence of an external reducer have been elucidated via in situ X-ray absorption spectroscopy. In recent years, many virus-inorganic materials have been synthesized as a means to produce high quality nanomaterials. However, the underlying mechanisms involved in virus coating have not been sufficiently studied to allow for directed synthesis.
View Article and Find Full Text PDF